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| Preview

® We propose a high-quality video frame interpolation/extrapolation (VFI/VFE) method.

>

>

Texture consistency loss (TCL): A novel TCL supervision technique to address the motion ambiguity issue in VFI/VFE.

Guided cross-scale pyramid alignment (GCSPA): We develop an effective GCSPA to

¢ accumulately fuse cross-scale information;

¢ utilize previously fused cross-scale feature as guidance to improve subsequently alignment accuracy.
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| Introduction

Video frame interpolation aims to generate intermediate frame that is temporal consistent with input frames.

Challenges

® Motion ambugiuty: Given few observed input images, it is an ill-posed problem to uniquely interpolate
an intermediate frame, due to the motion ambuguity issue. SOTA VFI models interpolate visually corret
results, but non of them align perfectly with the pre-defined groundtruth, as shown in the figure below.

® Scale variance: Scale variance occurs when objects are captured in consecutive frames while moving
rapidly, resulting in significant variations in scale.
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| Introduction

) ¢ Key Ideas:

1. Our proposal includes a texture consistency loss (TCL) to address the over-smoothing issue that arises from
motion ambiguity.

2. Additionally, we have designed a guided cross-scale pyramid alignment algorithm that considers scale variance
and accumulates multi-scale information at each pyramid level to improve alignment accuracy.

Inputs (Overlay) SoftSplat AMBE VFIformer Ours-triplets GT

Inputs (Overlay) SepConv




| Introduction

Framework
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® TCL allows the prediction to be supervised by not only the GT but also the corresponding patterns appeared in input
frames.

® Guided cross-scale pyramid alignment takes full advantage of different scale information in a bidirectional way.



| Method

Texture consistency loss for auxiliary supervision

® In addition to the conventional L1 loss, we introduce TCL to relax the rigid requirement of synthesizing the
intermediate frame as close as possible to GT

Iy = argﬁmin( Ly (f(]:I[]) + leLp(IAo, I _4,1)),
Io

I {—1,1} are two input frames, [ refers to the GT frame and jO is the predicted frame.

Ly, Lp denotes the L1 loss and our TCL loss.



| Method

Texture consistency loss : optimal patch matching in census transformation (CT) space

Given a predicted image patch, we search for its most revelant patch from two input photos.
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Our TCL 1s performed on the original RGB space:
Lp(Io, I_l, Il)(X) = Ll(fx, ft* )




| Method

Guided cross-scale pyramid alignment

Our approach differs from previous pyramid alignment techniques, such as PCD in EDVR, PDWN, and
Feflow, which perform feature aggregation in a sequential manner. Instead, we aim to make better use of
multiple cross-scale aligned features to guide subsequent alignments more efficiently. Furthermore, our densely
fused method facilitates direct cross-scale interaction, as opposed to the sequential propagation seen in PCD-
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| Experiments

Datasets

® Training Sets for video frame interpolation/extrapolation:

* Vimeo-Triplets-Train

® Testing Sets:
* Vimeo-Triplets-TestSet14
* Middlebury
* UCFI101
® Metrics
PSNR
SSIM



| Ablation Study

(1) Effects of each component

Method PSNR (dB) SSIM

Baseline 35.90 0.969
Baseline w/ TCL 36.21(+0.31) | 0.977(+0.008)
Baseline w/ GCSPA | 36.56(+0.66) | 0.976(+0.007)
Full 36.85(+0.95) | 0.982(+0.013)

Ablation studies of the proposed components

Inputs (Overlay) w/o TCL 33.1dB  w/TCL 33.8dB GT

(a) Visual comparison of results with/without TCL.

Inputs (Overlay) w/o GCSPA 27.5dB w/ GCSPA 38.8dB GT
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(b) Visual comparison of results with/without GCSPA.

Eftects of the proposed TCL and GCSPA.



| Ablation Study

(2) Hyper-parameters of the balancing factor &

o) 0 0.1 0.5 1.0 2.0 10.0
PSNR (dB) | 36.56 | 36.85 | 36.69 | 36.69 | 36.54 -
SSIM 0976 | 0982 | 0.979 | 0.979 | 0.978 -
(3) Analysis of different patch sizes in TCL
K 3 5 7 9
PSNR (dB) | 36.85 | 36.64 | 36.56 | 36.50
SSIM 0982 | 0.979 | 0.978 | 0.978
(4) Influence of patch matching space
Method Vimeo-Triplets-Test Middlebury
TCL-RGB 36.57/0.978 38.41/0.988
TCL-CT 36.85/0.982 38.85/0.989




| Experiments

Quantitative Comparison with SOTA VFI models

Method training # Parameters Runtime  Vimeo-Triplets-Test Middlebury UCF101

dataset (Million) (ms) PSNR SSIM PSNR SSIM PSNR SSIM
SepConv [37] proprietary 21.6 51 33.79 0.970 35773 0959 3478  0.967
SoftSplat [ 1] Vimeo-Triplets-Train 7.7 135 36.10 0.980 3842 0971 3539 0.970
DAIN [?] Vimeo-Triplets-Train 24.0 130 34.71 0.976 36.70  0.965 35.00 0.968
CAIN [10] Vimeo-Triplets-Train 42.8 38 34.65 0.973 35.11 0974 3498 0.969
EDSC [7] Vimeo-Triplets-Train 8.9 46 34.84 0.975 36.80 0.983 35.13 0.968

PWDN [5] Vimeo-Triplets-Train 7.8 - 35.44 - 37.20  0.967  35.00 -
FeFlow [17] Vimeo-Triplets-Train 133.6 - 35.28 - 36.61 0.965 35.08 0.957
MEMC-Net [+] Vimeo-Triplets-Train 70.3 120 34.40 0.970 3648 0.964 35.01 0.968
RIFE-L [15] Vimeo-Triplets-Train 20.9 72 36.10 0.980 37.64 0985 3529 0.969
M2M-PWC [14] Vimeo-Triplets-Train - - 35.40 0.978 - - 35.38  0.969
EA-Net [54] Vimeo-Triplets-Train - - 34.39 0.975 - - 3497  0.968
[FRNet-L [1Y] Vimeo-Triplets-Train 19.7 - 36.20 0.981 37.50 0968 3542 0.970

Splat-VFI [29] Vimeo-Triplets-Train - - 35.00 - 3842 0971 36.63 -
VFEIFormer [25] Vimeo-Triplets-Train 24.2 1431 36.50 0.982 3843 0987 3543 0.970
DKR-VFI [41] Vimeo-Triplets-Train 31.2 - 34.52 0.961 - - 35.50  0.965
Ours-triplets w/o TCL ~ Vimeo-Triplets-Train 28.9 292 36.56 0.981 38.64 0970 3537 0.969

Ours-triplets Vimeo-Triplets-Train 28.9 292 36.85 0.982 38.83 0989 3543 0979




| Experiments

Qualitative Comparison with SOTA
Inputs (Overlay) SoftSplat AMBE VFIformer Ours-triplets GT




| Experiments

Video frame extrapolation

Methods  # Param. Vimeo-Triplets-Test Middlebury ~ ® Qur method outperforms state-of-the-art models in terms of
SepConv [33]  21.7M 30.42 32.21 quantitative performance and is capable of extrapolating high-
FLAVR [15] 42.1M 31.14 32.90

quality future frames.

Moreover, state-of-the-art models trained with our TCL
consistently outperform their counterparts that are only
supervised by L1 loss, demonstrating the effectiveness of TCL.

VFI-T [38] 29.1M 31.18 33.60 °
SepConv w /TCL 21.7M 31.14 (1 0.72)  33.53(711.32)
FLAVR w /TCL 42.1M 31.35(10.21)  33.27(710.37)

VFI-T w/TCL 29.1M 31.28 (10.10)  33.72(710.12)

Ours-extra. 21.5M 32.16 34.85
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| More Results of video frame extrapolation

Inputs (Overlay)




I'TCL + SepConv for VFI

SepConv w/o TCL




| TCL + SOTA VFE models
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Thank You!
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