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Overview (1/2)

Test-time Adaptation

¢ Test-time adaptation (TTA) is a cutting-edge Al capability that allows a deployed model to adapt itself to
a new environment during the testing phase.
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Overview (2/2)

ECOTTA I Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization

(&) Our work aims to make TTA practical and applicable in edge devices (e.g., robots or autonomous vehicles).

™ We design memory-efficient architecture which minimizes memory usage (i.e., activations) by up to 86%
compared to state-of-the-art methods. Moreover, our novel regularization prevents overfitting by
leveraging the knowledge acquired during pre-training, which is distilled from the frozen original model.
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Introduction

Introduction (1/5)

Robustness of Neural Networks

o Deep neural networks (DNNs) have good performance on test domain similar to train domain.

o But DNNs often suffer from poor performance on test domain significantly different from train domain.
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Introduction (2/5)

Mitigating Domain Shift

o Several research fields attempt to address this problem,

1) Domain adaptation (DA)

Introduction

. DA adapts the test domain using both training data and test data during pretraining stage.

2) Domain generalization (DG)

. DG learns invariant representation with only training data.
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However, both DA and DG can not cope with infinite test domains.
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Introduction (3/5)

Test-time Adaptation

Introduction

o The TTA approach overcomes the domain shift by directly adapting to test domain

Test-time Adaptation
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Introduction

Introduction (4/5)

Motivation 1

o TTAis conducted in edge devices (eg, robots or autonomous vehicles) which are likely to be memory-constrained.

o Reducing memory usage is crucial but has been overlooked in previous TTA studies [1.2.34],
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[1] Tent: Fully test-time adaptation by entropy minimization. ICLR, 2021.

[2] EATA: Efficient test-time model adaptation without forgetting. ICML, 2022.

[3] NOTE: Robust continual test-time adaptation via instance-aware BN. NeurlIPS, 2022.
[4] CoTTA: Continual Test-time adaptation. CVPR, 2022.
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Introduction

Introduction (5/5)

Motivation 2

o Existing TTA 1234 methods without regularization eventually face overfitting in long-term adaptation due to
the effect of catastrophic forgetting and error accumulation.

@Iass blur

TENT (ICLR21)

o) Previous challenges o Our goal is to develop applicable and practical TTA approach.
1) High computation overhead » 1) Memory-efficient architecture for TTA
2) Overfitting in long-term adaptation 2) Self-distilled regularization

[1] Tent: Fully test-time adaptation by entropy minimization. ICLR, 2021.

[2] TTT++: When does self-supervised test-time training fail or thrive? NeurlIPS, 2021.

[3] SWR&NSP: Improving test-time adaptation via shift-agnostic weight regularization. ECCV, 2022.
[4] Contrastive test-time adaptation. CVPR, 2022.
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Approach

Approach (1/4)

Prerequisite

Activation
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o TTA works update model parameters to adapt to the target domain. This process inevitably requires additional
memory to store the activations which refer to the intermediate features stored during the forward propagation.

o Note that only learnable layers, not frozen layers, must store the activations.
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Approach

Approach (2/4)

Overview of Our Approach
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A. TENT updates multiple batch norm layers

B. InCoTTA, an entire network is trained

C. Incontrast, our approach requires a minimum size of activations by updating only a few layers. Also, stable long-term
adaptation is performed by our proposed regularization.
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Approach (3/4)

Memory-efficient Architecture
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o Our approach only updates the newly added meta networks on the target domain. The steps are the following:

i. Before deployment, we take any type of pre-trained model.

ii. The encoder of the pre-trained model is divided into K parts. We partition the shallow parts of the encoder more (i.e.,
densely) compared to the deep parts of it.

iii. The meta networks are attached to each part of the original networks and warmed up with train dataset.
iv. After deployment, only the meta networks are updated with unsupervised loss while the original networks are frozen.
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Approach

Approach (4/4)

Self-distilled Regularization
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After deployment

o We regularize the output X of the meta networks not to deviate from the output x;, of the frozen original networks.
o The output xj, of the frozen original networks contains the knowledge of the train domain consistently.

o We can prevent catastrophic forgetting by maintaining the source domain knowledge and error accumulation by utilizing
the class discriminability of the original model.
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Approach

Approach (4/4)

Self-distilled Regularization

[_Jifreeze :update (__): meta networks (Ours) Ds: labeled source data Dy : unlabeled online test data <—: backpropagation
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After deployment

o We regularize the output X of the meta networks not to deviate from the output x;, of the frozen original networks.
o The output xj, of the frozen original networks contains the knowledge of the train domain consistently.

o We can prevent catastrophic forgetting by maintaining the source domain knowledge and error accumulation by utilizing
the class discriminability of the original model.

Qualcomm KAIST EcoTTA CVPR23 Slide



Results (1/2)

Image Classification

(a) Comparison of average error rate (%) on CIFAR10-C
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(c) Comparison of average error rate (%) on ImageNet-C

ResNet-50 (AugMix)

Method Avg. erry  Memory (MB)
Source 74.36 91

BN Stats Adapt 57.87 91
Continual TENT (ICLR21) 56.1 1486
EATA (ICLM22) 54.9 1486
CoTTA (CVPR22) 54.6 3132
Ours (K=4) 55.2 438 (36, 72%1)
Ours (K=5) 54.4 747 (75.51%y)

(b) Comparison of average error rate (%) on CIFAR100-C

WideResNet-40

NOTE
< 42.5} ®
g TTT++
2 41.0f )
w 80%, 59%
Q 39.5¢
§ .Continual TENT CoTTA
g | EATA ©
E 36.5} :"'*rf‘éﬁ::h(:s) ‘Single domain TENT SWR&NSP.
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Memory (MB)
WideResNet-40 (AugMix) ResNet-50
Method Avg. err;, Mem. (MB) Avg. err, Mem. (MB)
Source 69.7 11 73.8 91
BN Stats Adapt 41.1 11 44.5 91
Single do. TENT (ICLR21) 36.7 188 40.1 926
Continual TENT (ICLR21) 38.3 188 45.9 926
TTT++ (NeurlPS21) 41.0 391 44.2 1876
SWR&NSP (ECCV22) 36.6 400 44.1 1970
EATA (ICML21) 37.1 188 39.9 926
CoTTA (CVPR22) 38.1 409 40.2 2064
Ours (K=4) 36.4 80 (80, 58%1) 39.5 296 (86, 68%1)
Ours (K=5) 36.3 92 (77, 51%y) 39.3 498 (76, 46%.)
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Results (2/2)

Semantic Segmentation

DeeplLabV3 with ResNet50
Source Glass blur | RobustNet (CVPR21)
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EcoTTA

CO n C I U S l O n I Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization

o We propose a simple yet effective approach that improves TTA performance and saves a significant amount of
memory.

o First, we presented a memory-efficient architecture which minimizes the intermediate activations used for
gradient calculations.

o Second, we proposed self-distilled regularization to prevent overfitting during long-term adaptation.

o We verified the memory efficiency and TTA performance of our approach with extensive experiments on
diverse datasets and backbone networks.
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