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Overview (1/2)

Test-time Adaptation

ApproachIntroduction ResultsOverview

Test-time adaptation (TTA) is a cutting-edge AI capability that allows a deployed model to adapt itself to 
a new environment during the testing phase.
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Overview (2/2)

EcoTTA

ApproachIntroduction ResultsOverview

Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization

Our work aims to make TTA practical and applicable in edge devices (e.g., robots or autonomous vehicles).😮

We design memory-efficient architecture which minimizes memory usage (i.e., activations) by up to 86% 
compared to state-of-the-art methods. Moreover, our novel regularization prevents overfitting by 
leveraging the knowledge acquired during pre-training, which is distilled from the frozen original model.

🤠

80%, 59% 
86%, 72%↓
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Introduction (1/5)

Robustness of Neural Networks

Approach ResultsOverview Introduction

o Deep neural networks (DNNs) have good performance on test domain similar to train domain.
o But DNNs often suffer from poor performance on test domain significantly different from train domain.
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Introduction (2/5)

Mitigating Domain Shift
o Several research fields attempt to address this problem, 

1) Domain adaptation (DA)
• DA adapts the test domain using both training data and test data during pretraining stage.

2) Domain generalization (DG)
• DG learns invariant representation with only training data.

Train domain 1

Train domain 2

Train domain 3

∞Test domain 1

Test domain 2

Train domain 1

Train domain 2

Train domain 3

∞

Domain Adaptation Domain Generalization

However, both DA and DG can not cope with infinite test domains.

Approach ResultsOverview Introduction

Area that DNNs can cope with
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Introduction (3/5)

Test-time Adaptation

Approach ResultsOverview Introduction

o The TTA approach overcomes the domain shift by directly adapting to test domain, Instead of enhancing 
generalization ability during the training time (such as DG).
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Test-time Adaptation
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Introduction (4/5)

Motivation 1

Approach ResultsOverview Introduction

o TTA is conducted in edge devices (eg, robots or autonomous vehicles) which are likely to be memory-constrained.
o Reducing memory usage is crucial but has been overlooked in previous TTA studies [1,2,3,4].

[1] Tent: Fully test-time adaptation by entropy minimization. ICLR, 2021.

[2] EATA: Efficient test-time model adaptation without forgetting. ICML, 2022.
[3] NOTE: Robust continual test-time adaptation via instance-aware BN. NeurIPS, 2022.
[4] CoTTA: Continual Test-time adaptation. CVPR, 2022.

[1,2] [4]
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Introduction (5/5)

Motivation 2

Approach ResultsOverview Introduction

o Existing TTA [1,2,3,4] methods without regularization eventually face overfitting in long-term adaptation due to 
the effect of catastrophic forgetting and error accumulation.

[1] Tent: Fully test-time adaptation by entropy minimization. ICLR, 2021.

[2] TTT++: When does self-supervised test-time training fail or thrive? NeurIPS, 2021.
[3] SWR&NSP: Improving test-time adaptation via shift-agnostic weight regularization. ECCV, 2022.
[4] Contrastive test-time adaptation. CVPR, 2022.

Input OursTENT (ICLR21)

o Previous challenges 
1) High computation overhead
2) Overfitting in long-term adaptation

o Our goal is to develop applicable and practical TTA approach.
1) Memory-efficient architecture for TTA
2) Self-distilled regularization

Input
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Approach (1/4)

Prerequisite

ResultsOverview Introduction Approach

o TTA works update model parameters to adapt to the target domain. This process inevitably requires additional 
memory to store the activations which refer to the intermediate features stored during the forward propagation.

o Note that only learnable layers, not frozen layers, must store the activations. 
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Approach (2/4)

Overview of Our Approach

ResultsOverview Introduction Approach

A. TENT updates multiple batch norm layers, in which large activations must be stored for gradient calculation.
B. In CoTTA, an entire network is trained with additional strategies for continual adaptation that requires a significant 

amount of both memory and time.
C. In contrast, our approach requires a minimum size of activations by updating only a few layers. Also, stable long-term 

adaptation is performed by our proposed regularization.

TENT CoTTA Ours
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Approach (3/4)

Memory-efficient Architecture

Overview Introduction Approach

Video

Before deployment After deployment

o Our approach only updates the newly added meta networks on the target domain. The steps are the following:

i. Before deployment, we take any type of pre-trained model.
ii. The encoder of the pre-trained model is divided into K parts. We partition the shallow parts of the encoder more (i.e., 

densely) compared to the deep parts of it.
iii. The meta networks are attached to each part of the original networks and warmed up with train dataset.
iv. After deployment, only the meta networks are updated with unsupervised loss while the original networks are frozen.
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Before deployment After deployment

Approach (4/4)

Self-distilled Regularization

ResultsOverview Introduction Approach

o We regularize the output #𝒙𝒌 of the meta networks not to deviate from the output 𝒙𝒌 of the frozen original networks.
o The output 𝒙𝒌 of the frozen original networks contains the knowledge of the train domain consistently.
o We can prevent catastrophic forgetting by maintaining the source domain knowledge and error accumulation by utilizing 

the class discriminability of the original model.
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Approach (4/4)

Self-distilled Regularization

ResultsOverview Introduction Approach

Before deployment After deployment

TTA loss (after deployment)

o We regularize the output #𝒙𝒌 of the meta networks not to deviate from the output 𝒙𝒌 of the frozen original networks.
o The output 𝒙𝒌 of the frozen original networks contains the knowledge of the train domain consistently.
o We can prevent catastrophic forgetting by maintaining the source domain knowledge and error accumulation by utilizing 

the class discriminability of the original model.

Entropy 
minimization

Our 
regularization
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Results (1/2)

Image Classification

Overview ApproachIntroduction Results

(c) Comparison of average error rate (%) on ImageNet-C

86%, 72%↓
80%, 59% ↓

(a) Comparison of average error rate (%) on CIFAR10-C (b) Comparison of average error rate (%) on CIFAR100-C

WideResNet-40 (AugMix) WideResNet-28 ResNet-50

Method Avg. err # Mem. (MB) Avg. err # Mem. (MB) Avg. err # Mem. (MB)

Source 36.7 11 43.5 58 48.8 91
BN Stats Adapt [49] 15.4 11 20.9 58 16.6 91
Single do. TENT [64] 12.7 188 19.2 646 15.0 925
Continual TENT 13.3 188 20.0 646 15.2 925
TTT++ [42] 14.6 391 20.3 1405 16.1 1877
SWR&NSP [9] 12.1 400 17.2 1551 15.4 1971
NOTE [17] 13.4 188 20.2 646 - -
EATA [50] 13.0 188 18.6 646 14.2 925
CoTTA [65] 14.0 409 17.0 1697 14.4 2066
Ours (K=4) 12.2 80 (80, 58%#) 16.9 404 (76, 38%#) 14.4 296 (86, 68%#)

Ours (K=5) 12.1 92 (77, 51%#) 16.8 471 (72, 27%#) 14.1 498 (76, 46%#)

(a) CIFAR10-C with severity level 5

WideResNet-40 (AugMix) ResNet-50

Method Avg. err # Mem. (MB) Avg. err # Mem. (MB)

Source 69.7 11 73.8 91
BN Stats Adapt 41.1 11 44.5 91
Single do. TENT (ICLR21) 36.7 188 40.1 926
Continual TENT (ICLR21) 38.3 188 45.9 926
TTT++ (NeurIPS21) 41.0 391 44.2 1876
SWR&NSP (ECCV22) 36.6 400 44.1 1970
EATA (ICML21) 37.1 188 39.9 926
CoTTA (CVPR22) 38.1 409 40.2 2064
Ours (K=4) 36.4 80 (80, 58%#) 39.5 296 (86, 68%#)

Ours (K=5) 36.3 92 (77, 51%#) 39.3 498 (76, 46%#)

(b) CIFAR100-C with severity level 5

Table 1. Comparison of error rate (%) on CIFAR-C. We report an average error of 15 corruptions on continual TTA and a memory
requirement including model parameters and activation sizes. The lowest error is in bold, and the second lowest error is underlined. The
memory reduction rates compared to CoTTA and TENT are presented sequentially. WideResNet-40 was pre-trained with AugMix [26]
that is a data processing to increase the robustness of the model. Source denotes the pre-trained model without adaptation. Single domain
(in short, single do.) TENT resets the model when adapting to a new target domain, so the domain labeles are required.

ResNet-50 (AugMix)

Method Avg. err # Memory (MB)

Source 74.36 91
BN Stats Adapt 57.87 91
Continual TENT (ICLR21) 56.1 1486
EATA (ICLM22) 54.9 1486
CoTTA (CVPR22) 54.6 3132
Ours (K=4) 55.2 438 (86, 72%#)

Ours (K=5) 54.4 747 (75, 51%#)

Table 2. Comparison of error rate (%) on ImageNet-C with

severity level 5. Standard deviation for ten diverse corruption se-
quences is denoted by the parentheses values. The total memory
refers to the sum of model parameters and activations.

Avg. err (%) CIFAR10-C CIFAR100-C

Method Mem. (MB) single do. continual single do. continual

BN Stats Adapt [49] 91 16.6 16.6 44.5 44.5
TinyTL† [4] 379 15.8 21.9 40.5 77.4
RepNet† [68] 508 15.2 20.9 41.5 52.1
AuxAdapt† [72] 207 16.0 16.7 44.0 45.8
Ours (K=4) 296 14.4 14.4 39.5 39.2

Table 3. Comparison with methods for on-device learning. The
backbone is ResNet-50. † denotes our own re-implemented mod-
els. single do. indicates the singe domain TTA setup.

amount of computational overhead because it is performed
in parallel with the entropy minimization loss Lent.

4. Classification Experiments

We evaluate our approach to image classification tasks
based on the continual test-time adaptation setup with three
datasets: CIFAR10-C, CIFAR100-C, and ImageNet-C.
Experimental setup. Following CoTTA [65], we conduct
most experiments on the continual TTA task, where we
continually adapt the deployed model to each corruption

type sequentially without resetting the model. This task is
more challenging but more realistic than single domain TTA
task [64] in which the adapted model is periodically reset to
the original pre-trained model after finishing adaptation to
each target, so they require additional domain information.
Moreover, we evaluate our approach on the long-term TTA
setup, which is detailed in Section 4.2.

Following the previous TTA studies [64, 65], we eval-
uate models with {CIFAR10, CIFAR10-C}, {CIFAR100,
CIFAR100-C}, and {ImageNet, ImageNet-C} where the
first and the second dataset in each bracket refers to the
source and the target domain, respectively. The target do-
mains include 15 types of corruptions (e.g. noise, blur,
weather, and digital) with 5 levels of severity, which are
widely used in conventional benchmarks [25].

Implementation Details. We evaluate our approach within
the frameworks officially provided by previous state-of-
the-art methods [65, 50]. For fair comparisons, we use
the same pre-trained model, which are WideResNet-28 and
WideResNet-40 [70] models from the RobustBench [11],
and ResNet-50 [24] model from TTT++ [42, 9]. Before the
deployment, we pre-train the meta networks on the source
dataset using a cross-entropy loss with SGD optimizer with
the learning rate of 5e-2. Since the meta networks contain
only a few layers, we pre-train them with a small number
of epochs: 10 and 3 epochs for CIFAR and ImageNet, re-
spectively. After deployment, similar to EATA [50], we use
the same SGD optimizer with the learning rate of 5e-3. In
Eq. (2), the entropy threshold H0 is set to 0.4⇥ lnC where
C denotes the number of task classes. The batch size is
64 and 32 for CIFAR and ImageNet, respectively. We set
the importance of the regularization � in Eq. (3) to 0.5 to
balance it with the entropy minimization loss. Additional
implementation details can be found in Appendix C.

Evaluation Metric. For all the experiments, we report error
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WideResNet-40 (AugMix) WideResNet-28 ResNet-50

Method Avg. err # Mem. (MB) Avg. err # Mem. (MB) Avg. err # Mem. (MB)

Source 36.7 11 43.5 58 48.8 91
BN Stats Adapt [49] 15.4 11 20.9 58 16.6 91
Single do. TENT [64] 12.7 188 19.2 646 15.0 925
Continual TENT 13.3 188 20.0 646 15.2 925
TTT++ [42] 14.6 391 20.3 1405 16.1 1877
SWR&NSP [9] 12.1 400 17.2 1551 15.4 1971
NOTE [17] 13.4 188 20.2 646 - -
EATA [50] 13.0 188 18.6 646 14.2 925
CoTTA [65] 14.0 409 17.0 1697 14.4 2066
Ours (K=4) 12.2 80 (80, 58%#) 16.9 404 (76, 38%#) 14.4 296 (86, 68%#)

Ours (K=5) 12.1 92 (77, 51%#) 16.8 471 (72, 27%#) 14.1 498 (76, 46%#)

(a) CIFAR10-C with severity level 5

WideResNet-40 (AugMix) ResNet-50

Method Avg. err # Mem. (MB) Avg. err # Mem. (MB)

Source 69.7 11 73.8 91
BN Stats Adapt 41.1 11 44.5 91
Single do. TENT (ICLR21) 36.7 188 40.1 926
Continual TENT (ICLR21) 38.3 188 45.9 926
TTT++ (NeurIPS21) 41.0 391 44.2 1876
SWR&NSP (ECCV22) 36.6 400 44.1 1970
EATA (ICML21) 37.1 188 39.9 926
CoTTA (CVPR22) 38.1 409 40.2 2064
Ours (K=4) 36.4 80 (80, 58%#) 39.5 296 (86, 68%#)

Ours (K=5) 36.3 92 (77, 51%#) 39.3 498 (76, 46%#)

(b) CIFAR100-C with severity level 5

Table 1. Comparison of error rate (%) on CIFAR-C. We report an average error of 15 corruptions on continual TTA and a memory
requirement including model parameters and activation sizes. The lowest error is in bold, and the second lowest error is underlined. The
memory reduction rates compared to CoTTA and TENT are presented sequentially. WideResNet-40 was pre-trained with AugMix [26]
that is a data processing to increase the robustness of the model. Source denotes the pre-trained model without adaptation. Single domain
(in short, single do.) TENT resets the model when adapting to a new target domain, so the domain labeles are required.

ResNet-50 (AugMix)

Method Avg. err # Memory (MB)

Source 74.36 91
BN Stats Adapt 57.87 91
Continual TENT (ICLR21) 56.1 1486
EATA (ICLM22) 54.9 1486
CoTTA (CVPR22) 54.6 3132
Ours (K=4) 55.2 438 (86, 72%#)

Ours (K=5) 54.4 747 (75, 51%#)

Table 2. Comparison of error rate (%) on ImageNet-C with

severity level 5. Standard deviation for ten diverse corruption se-
quences is denoted by the parentheses values. The total memory
refers to the sum of model parameters and activations.

Avg. err (%) CIFAR10-C CIFAR100-C

Method Mem. (MB) single do. continual single do. continual

BN Stats Adapt [49] 91 16.6 16.6 44.5 44.5
TinyTL† [4] 379 15.8 21.9 40.5 77.4
RepNet† [68] 508 15.2 20.9 41.5 52.1
AuxAdapt† [72] 207 16.0 16.7 44.0 45.8
Ours (K=4) 296 14.4 14.4 39.5 39.2

Table 3. Comparison with methods for on-device learning. The
backbone is ResNet-50. † denotes our own re-implemented mod-
els. single do. indicates the singe domain TTA setup.

amount of computational overhead because it is performed
in parallel with the entropy minimization loss Lent.

4. Classification Experiments

We evaluate our approach to image classification tasks
based on the continual test-time adaptation setup with three
datasets: CIFAR10-C, CIFAR100-C, and ImageNet-C.
Experimental setup. Following CoTTA [65], we conduct
most experiments on the continual TTA task, where we
continually adapt the deployed model to each corruption
type sequentially without resetting the model. This task is
more challenging but more realistic than single domain TTA

task [64] in which the adapted model is periodically reset to
the original pre-trained model after finishing adaptation to
each target, so they require additional domain information.
Moreover, we evaluate our approach on the long-term TTA
setup, which is detailed in Section 4.2.

Following the previous TTA studies [64, 65], we eval-
uate models with {CIFAR10, CIFAR10-C}, {CIFAR100,
CIFAR100-C}, and {ImageNet, ImageNet-C} where the
first and the second dataset in each bracket refers to the
source and the target domain, respectively. The target do-
mains include 15 types of corruptions (e.g. noise, blur,
weather, and digital) with 5 levels of severity, which are
widely used in conventional benchmarks [25].

Implementation Details. We evaluate our approach within
the frameworks officially provided by previous state-of-
the-art methods [65, 50]. For fair comparisons, we use
the same pre-trained model, which are WideResNet-28 and
WideResNet-40 [70] models from the RobustBench [11],
and ResNet-50 [24] model from TTT++ [42, 9]. Before the
deployment, we pre-train the meta networks on the source
dataset using a cross-entropy loss with SGD optimizer with
the learning rate of 5e-2. Since the meta networks contain
only a few layers, we pre-train them with a small number
of epochs: 10 and 3 epochs for CIFAR and ImageNet, re-
spectively. After deployment, similar to EATA [50], we use
the same SGD optimizer with the learning rate of 5e-3. In
Eq. (2), the entropy threshold H0 is set to 0.4⇥ lnC where
C denotes the number of task classes. The batch size is
64 and 32 for CIFAR and ImageNet, respectively. We set
the importance of the regularization � in Eq. (3) to 0.5 to
balance it with the entropy minimization loss. Additional
implementation details can be found in Appendix C.

Evaluation Metric. For all the experiments, we report error
rates calculated during testing and the memory consump-
tion, including the model parameter and the activation stor-

5

K: Model partition factor
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Results (2/2)

Semantic Segmentation

Overview ApproachIntroduction Results

Video

RobustNet (CVPR21)Input

TENT (ICLR21)

2721Mb

DeepLabV3 with ResNet50

Ours

918Mb (63%↓)

Source

33mIoU
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50mIoU
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EcoTTA

Conclusion

ApproachIntroduction ResultsOverview

Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization

o We propose a simple yet effective approach that improves TTA performance and saves a significant amount of 
memory.

o First, we presented a memory-efficient architecture which minimizes the intermediate activations used for 
gradient calculations.

o Second, we proposed self-distilled regularization to prevent overfitting during long-term adaptation.
o We verified the memory efficiency and TTA performance of our approach with extensive experiments on 

diverse datasets and backbone networks.
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