VANCOUVER CANADA

Ambiguous Medical Image Segmentation using Diffusion Models

Aimon Rahman' , Jeya Maria Jose Valanarasu' , llker Hacihalilogly’ , Vishal M Patel’

Johns Hopkins University! , University of British Columbia?

=X
Pl
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING



Eﬁ!
III"' JUNE 18-22,2023 & [ -‘*—é‘ .
JOHNS HOPKINS CVPRé=24iu.
VANCOUVER. CANADA

WHITING SCHOOL
of ENGINEERING

Background
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Unlike natural images, ground truths are not
deterministic in medical images as different
diagnosticians can have different opinions on the
type and extent of an anomaly.
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Background

Existing Probabilistic Networks

Deterministic

a)

Network

Prediction

Input

b) Probabilistic
PriorNet u,,,

Pnor

Network

Predictions

T
I

JUNE 18-22, 2023 E

CVPR¢

c-VAE-based methods
incorporate prior information
about the input image in a
separate network and sample
latent variables to produce
stochastic segmentation
masks
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Background

Problem with Evaluation Metrics (GED)

Input

GED =0.237
CI =0.315
GED = 0.257
Cl 0.616

Ground Truth

PHi-Seg
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Generalized Energy Distance
(GED) metric overly rewards
sample diversity without
considering the match with
ground truth samples
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Contribution

e We introduce a diffusion model-based approach that generates multiple
plausible segmentation masks by learning a distribution over group
insights.

e The proposed model utilizes diffusion's stochastic sampling process to
produce diverse segmentation variants with minimal additional learning.

e The model's effectiveness is demonstrated on CT, ultrasound, and MRI
images, outperforming existing state-of-the-art methods in accuracy and
preserving natural variation.

e A new metric is proposed to evaluate both segmentation diversity and
accuracy, catering to the interests of clinical practice and collective
insights.
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Method

Training Inference
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' Reverse Diffusion
b - Input image x, . - Segmentation mask with added noise X, - Segmentation masks of b X, - Output from single time step

AMN - Ambiguity Modeling Network ACN - Ambiguity Controlling Network



=X
ill"' JUNE 18-22, 2023 15

JOIVEE\ISHOPKINS CVPRe===us

Cl Score - Intuition

- The proposed CI score (Collective Insight) addresses the limitations of GED and consists of three
components: Combined Sensitivity, Maximum Dice Matching, and Diversity Agreement.

- Combined Sensitivity measures the true positive rate of the combined predictions and ground
truths, aligning with clinical practice objectives.

- Maximum Dice Matching calculates the maximum Dice score between individual predictions and
all ground truths, representing the comparison of student diagnoses with expert opinions.

- Diversity Agreement assesses the diversity of predicted outputs by comparing the variance
between ground truth and prediction distributions.

- The Cl score is defined as the harmonic mean of the combined sensitivity, maximum Dice
matching, and diversity agreement components.
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Cl Score - Mechanism
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Table 1. Comparison of quantitative results in terms of GED, CI, and D, for all the datasets with state-of-the-art ambiguous segmenta-
tion networks. The best results are in Bold and we achieve state-of-the-art results in terms of D, and CI score across all datasets.

Method LIDC-IDRI [4] Bone Segmentation MS-Lesion [12]
GED() CIf) Dpe(1) [ GED({) CI1) Dnac(t) | GED() CI1) Dpmaa(1)
Probabilistic Unet [29] 0.353 0.731 0.892 0.390 0.738 0.844 0.749 0.514 0.502
PHi-Seg [¢] 0.270 0.736 0.904 0.312 0.7544 0.848 0.681 0.518 0.506
Generalized Probabilistic U-net [10] 0.299 0.707 0.905 0.289 0.7501 0.863 0.678 0.522 0.513
CIM D (Ours) 0.321 0.759 0.915 0.295 0.7578 0.889 0.733 0.560 0.562




JUNE 18-22, 2023 %
A
i

JOHNS HOPKINS CVPR«
VANCOUVER, CANADA

WHITING SCHOOL
of ENGINEERING

Results

Input Ground Truth Probabilistic Unet PHi-Seg Ours

- /]
» Ground Truth ! . - - . .
~o AEEE EESS EEEE

rise [N
Ground Truth Probabilistic Unet PHi-Seg Y
oo HEHE SHOE EEEE

. 35 S o S
o HEEET Hd




B
JUNE 18-22, 2023

JOHNS HOPKINS CVP R‘E

e
WHITING SCHOOL VANCOUVER, CANADA
of ENGINEERING

Input Prob-Unet  CIMD Wt PHiScg  CIMD  Impu  PbUnet CIMD  Imut  PHiSeg  CIVD
Input  Prob-Unet  CIMD It PHiSeg  CIMD  Input  Prob-Unet CIMD Input PHiSeg  CIMD




=X
&
JUNE 18-22, 2023 [

JOHNS HOPKINS CVPR VANCOUVER, CANADA

WHITING SCHOOL
of ENGINEERING

Thank You




