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 The label noise Is produced during labeling process.



Background

® A Training Examples (Clean) @ A Training Examples (Mislabeled) @@ A Test Examples = Decision Boundary

* Training with mislabeled examples would lead to WRONG decision
Boundary

Pictures from Selective-Supervised Contrastive Learning with Noisy Labels (CVPR 2022)
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* Previous work usually select the clean samples with small loss trick.

« Small loss trick: the neural network tend to fit the clean samples which

has small losses.

Pictures from Unsupervised Label Noise Modeling and Loss Correction (NIPS 2019) and
DivideMix: Learning with Noisy Labels as Semi-supervised Learning (ICLR 2020)
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Contrastive Learning enables Noisy Label Learning by the Unsupervised Noise-Robust Representations

They cannot handle extremely noisy scenario when Nearest Neighbors are All mislabeled!
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GMM of Data Distribution Representations

The proposed TCL

(1) leverages contrastive learning for learning robust representations,
(2) models the data distribution via a GMM, and

(3) detects the examples with wrong labels as out-of-distribution examples.



:: The Proposed TCL

How to model the data distribution:

Given the representation v = f(x) and discrete latent variables
z€ {1,2,...,K}, the unsupervised GMM can be defined as

— zk 1 Iv‘p’kaak)

Zipe(yi = k‘wz)’vz)
— norm ,
H ( Zz PO(?/z’ = k\wz)
— Ez’PO(yz’ = k|x;)(vi — py)(vi — Nk)T
ZiPO(yi = k|x;)




:i The Proposed TCL

Out-Of-Distribution Label Noise Detection

The posterior probability can be defined as:
yir = CXp (—(vz' — ) (Vi — /Lk)/QUk)
T oeexp (—(vi — )T (vi — py) [20%)
Yik = p(2i = kl|z;)

= exp(v]p/on) [ D exp(vl /o)

Then, we can introduce the noisy label y and define the following conditional
probability to measure the probability of one sample with clean label:

Yy=z|i = p(yz- = Zz|<13z)

= exp(v]p,, /02) [ D exp(v] /o)




e The Proposed TGL

Out-Of-Distribution Label Noise Detection

Another two-component GMM is employed to automatically classify the

clean/wrong labels:
1 1

P(Yyezi) = ¥ P(Wy=zjis€) = ¥ p()P(Vy=sjilc)

c=0 c=0

where c¢ is the new introduced latent variable: ¢ = 1 indicates the cluster of
clean labels with higher mean value and vice versus ¢ = 0.



"* The Proposed TCL

Cross-supervision with Entropy Regularization

The true targets are the convex combination of its noisy labels and the
predictions from the model itself:

t = wiy; + (1 — wy)g(a)
t§2) = w;y,; + (1 —w;)g(x,

where wi €0,1] =p(e=1h=:1) Yi the noisy one-hot label. 9(=:") andg(=”) gre the
predictions.



; The Proposed TCL

Cross-supervision with Entropy Regularization

The loss can be defined as:
Leross = £ (9@, t7) + £ (9(=), V)

1 1
Ereg = —H (@ Z g(iB)) | ‘Bl Z H(g(m))

xch xcB

where H() is the entropy of predictions to avoid the predictions collapsing
into a single class and encourage the model to have high confidence for
predictions.



The Proposed TCL

Learning Robust Representations

The contrastive loss and mixup augmentation are employed to learn robust representations.
Contrastive loss:

exp (f(=V)"f(=?)/1

. )
Fotr = —log D wes €XD (f(az(l))Tf(a:)/T) |

Mixup augmentation:

£ =\ + (1 — M),

[/

{wﬁm) =Ax; + (1 — Nxj,

Laign = £ (9(@{™), 8™ + £(p(2]2{™), £™)



Experiments & Results

CIFAR-10 CIFAR-100

Noise type/rate Sym. Asym. Avg. Sym. Avg.

20% 50% 80% 90%  40% 20% 50% 80% 90%
Cross-Entropy 82.7 579 26.1 16.8 76.0 5109 61.8 37.3 8.8 35 27.8
Mixup (17°) [46] 923 77.6 46.7 439 7777 67.6 66.0 466 17.6 8.1 34.6
P-correction (19°) [43] 920 887 76.5 58.2 016 814 68.1 56.4 20.7 8.8 38.5
M-correction (19°) [1] 93.8 919 86.6 638.7 87.4 85.7 734 654 476 205 51.7
ELR (20°) [25] 938 92,6 88.0 633 85.3 84.6 745 70.2 452 205 526
DivideMix (20’) [20] 95.0 93.7 924 742 914 89.3 748 72.1 57.6 29.2 584
MOIT (21°’) [29] 93.1 90.0 79.0 69.6 920 84.7 73.0 64.6 465 36.0 55.0
RRL (21°) [21] 958 943 924 75.0 919 89.8 791 748 5777 29.3 60.2
Sel-CL+ (22°) [23] 955 939 89.2 81.9 934 90.7 76.5 724 59.6 48.8 64.3
TCL (ours) 950 939 925 894 92.6 92.7 78.0 73.3 65.0 545 67.7

::0.1 ::O.l ::0.2 ::0.2 ::0.1 ::0.2 ::O.2 ::O.3 ::O.S

Results on CIFAR




Experiments & Results

Method Acc (%)

WebVision | ILSVRC12

topl topS | topl topS

Forward [30] | 61.1 &82.6 | 57.3 82.3
D2L [26] | 62.6 84.0 | 57.8 81.3
Iterative-CV [2] | 65.2 85.3 | 61.6 84.9
Decoupling [27] | 62.5 84.7 | 58.2 82.2
MentorNet [16] | 63.0 814 | 57.8 79.9
Co-teaching [11] | 63.5 85.2 | 61.4 84.7
ELR [25] | 76.2 91.2 | 68.7 87.8
DivideMix [20] | 77.3 91.6 | 75.2 90.8
RRL [21] | 76.3 91.5 | 73.3 91.2
NGC[22] | 791 91.8 | 744 91.0
MOIT [29] | 77.9 919 | 73.8 91.7
TCL (ours) | 79.1 923 | 754 924

Table 4. Results on WebVision (mini).

Cross-Entropy 69.2
Label Correction [1] 71.0
Joint-Opt [34] 72.2

ELR [25] 72.8

SL [37] 74.4

DivideMix [20] 74.4
MentorMix [15] 74.3
RRL [21] 74.8

TCL (ours) 74.8

Table 5. Results on Clothing1 M.

Results on Real-world Datasets




Experiments & Results

Dataset CIFAR-10 CIFAR-100
Sym. Asym. Avg. Sym. Avg.
Noise type/rate 50% 90%  40% 50% 90%
(i) _ Baseline 700 20.6 775 56.1 473 68 27.1
i) Loss[1,20] 925 759 732 806 712 160 43.6
E-NN[29] 929 797 913 880 703 39.8 55.1
OOD (ours) 93.1 821 920 89.1 70.7 45.9 58.3
(i) Ensem.[25] 913 727 898 846 682 369 52.6
Loross (OUrs) 939 894 926 920 733 545 63.9
(V) W/O Lyeg 2.0 345 903 723 68.5 243 464
(V)  Wlo Latign 918 84.6 897  88.7 69.4 484 589
(vi) MoCo 044 907 931 927 740 573 65.6

Table 3. Ablation results of different components in TCL.

Ablation Study




Experiments & Results
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Figure 2. Qualitative results. For the model trained on CIFAR-10 with 90% sym. noise at 200th epoch, we show t-SNE visualizations for the
learned representations of (a) testing set where different color denotes different class predicted by g(-) and (b) 10K samples from training set
colored by the true labels; the gray ‘+° denotes the samples with noisy labels. (c) The histogram of p(y = z|a) for full training set colored
by the clean and noisy labels. (d) The validation accuracy across training of CIFAR-10 and CIFAR-100 on 90% sym. noise.

Visualization
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On behalf of all my co-authors



