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Introduction

Train a model through a single pass over a stream of time-
varying distribution.

Online Continual Learning (OCL)
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Introduction

2019 2020 2021 2022

Predict misinformation on Twitter’s data

Need to continually learn over time!

Why is OCL important?

Image credits: https://health.wyo.gov/publichealth/infectious-disease-epidemiology-unit/disease/novel-coronavirus/, https://www.freepik.com/premium-vector/election-day-usa-voting-vector-logo-icon-template_20456439.htm, 
https://www.fayettecountypa.org/CivicAlerts.aspx?AID=120&ARC=314, https://skybluetavern.com/2022-fifa-world-cup/
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Introduction

Real-time streams are fast!

David Sayce. The number of tweets per day in 2022, Aug 2022.

OCL method Predict misinformation

Can train on 

35K tweets/minute
Generates 

350K tweets/minute

10x slower than the stream
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Introduction

Real-time streams are fast!

1 min Accumulation of 3.1M tweets (9 minutes)

We end up using an old model for prediction!

Training time (10 minutes)
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Introduction

Real-time streams are fast!

1 min Accumulation of 3.1M tweets (9 minutes)

We end up using an old model for prediction!

Training time (10 minutes)

Efficient learning is key in real-time OCL applications 
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Introduction: Proposal

Current OCL evaluation:
• Allows unlimited training computational budget.
• Unfairly compares methods with different training complexities.

How can we evaluate OCL in a fair manner?
A real-time evaluation protocol for OCL that factors in 
training computational complexity.
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Methodology: Conventional Setup
Learn from a stream revealing data sequentially
over steps where at every step: 

1. reveals
2. generates
3. reveals
4. Evaluate             with 
5. Train        and update to

…
…
…
…
…



9

Predicted labels

Training steps

Real-Time
Prediction

…

Training

…

…
…
…

Time Step

Methodology: Conventional Setup

Assumes stream will wait for the 
model to complete training
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Methodology: Proposed Setup
1. Fast streams (social media, real-time sensors)

2. Slow streams (medical and agriculture applications)  
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Methodology: Proposed Setup
Method     ,

Time Steps

Method     ,

Time Steps
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Need to modify this step 
to incorporate 5. Train        and update to

Methodology: Proposed Setup
Learn from a stream revealing data sequentially
over steps where at every step: 

1. reveals
2. generates
3. reveals
4. Evaluate             with 
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5. train        and update to

Methodology: Proposed Setup
Learn from a stream revealing data sequentially
over steps where at every step: 

1. reveals
2. generates
3. reveals
4. Evaluate             with 
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Training Delay Training Delay

Real-Time
Prediction

…

Training

…

…
…
…

Time Step

Methodology: Proposed Setup

Predicted labels

Training steps

Skipped steps

Let’s consider a method with: 
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Methodology: Proposed Setup
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Experiments: The Task

Input Image

Predict the 
Geolocation

712 Classes (Locations)

CLOC [1]

[1] Cai, Zhipeng, et al. "Online continual learning with natural distribution shifts: An empirical study with visual data." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
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Experiments: Metric
Average Online Accuracy: measures the ability of models 
to adapt to incoming stream samples

Training batch Next Training batch

Time

Evaluate on 
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Experiments: Methods

[2]
[3]

[4]

[5]

[6]
[7]

[1]

[1] Chaudhry, Arslan, et al. Continual learning with tiny episodic memories. In International Conference on Machine Learning (ICML), 2019
[2] Lucas Caccia, et al. New insights on reducing abrupt representation change in online continual learning. In International Conference on Learning Representations (ICLR), 2022.
[3] Zhizhong Li, et al. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI), 2017.
[4] Arslan Chaudhry, et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In European Conference on Computer Vision (ECCV), 2018.
[5] Zhipeng Cai, et al. Online continual learning with natural distribution shifts: An empirical study with visual data. In International Conference on Computer Vision (ICCV), 2021.
[6] Rahaf Aljundi, et al. Online continual learning with maximally interfered retrieval. In Conference on Neural Information Processing Systems (NeurIPS), 2019.
[7] Rahaf Aljundi, et al. Gradient based sample selection for online continual learning. In Conference on Neural Information Processing Systems (NeurIPS), 2019.
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Experiments

What happens when OCL methods are evaluated under 
our delayed real-time evaluation setup?
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Experiments: Fast Stream
ER, the simplest 

method, outperforms all 
considered methods
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Experiments: Fast Stream
ER, the simplest 

method, outperforms all 
considered methods

What if we increase the 
complexity of ER (baseline) 
such that it has the same 
delay as each method?
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Experiments: Fast Stream – Data Normalization
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Experiments

What if the stream is as slow as each OCL method? 



24

Experiments: Slow Stream
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Conclusion
• All evaluated methods underperformed the ER baseline in 

our realistic setup.
• OCL research should consider training efficiency in 

evaluations.


