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Regeneration as a 
pretraining task

• Masked image modeling – Masked 

autoecoders

• Using masked autoencoders for 

specific tasks (segmentation, depth 

estimation, object detection)

Sources:
• He, Kaiming, et al. "Masked autoencoders are scalable vision learners.
" Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 2022.
• Peng, Zhiliang, et al. "Beit v2: Masked image modeling with vector-
quantized visual tokenizers." arXiv preprint arXiv:2208.06366 (2022).
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Train generative models 
using a reconstruction 
scheme

• Drop certain regions or mask 

several pixels 

• Using reconstruction loss to 

enhance the representation power.

• Train the models with unsupervised 

manner as like adversarial loss

Sources:
• Li, Junnan, et al. "Align before fuse: Vision and language 

representation learning with momentum distillation." Advances in 

neural information processing systems 34 (2021): 9694-9705.
• Pathak, Deepak, et al. "Context encoders: Feature learning by 

inpainting." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.
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Image Regeneration as an 
auxiliary task

• Using image regeneration as an 

auxiliary task to improve dense 

predictions.

• We control the types of redactions 

based on the dense task. 

• Inpainting-based regeneration is a 

good base for segmentation, 

whereas spectral regeneration 

improves tasks such as surface 

normal or depth estimation.
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Method : Types of redaction
Various redaction types based on the task

• Spectral redaction: Redacting frequencies

• Spatial redaction: Redacting pixels

Input image Spectral (Lowpass) Spectral (Bandstop)

Spatial (Random) Spatial (Checkerboard) Spatial (Random Blocks)
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Method : The DejaVu loss function
Key Idea and implementation of the DejaVu loss
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Method : Conditional Regeneration Module (CRM)
Two types of CRM modules which were studies

• Forward Mode

• Recursive Mode
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Method : Further supervision with DejaVu
Two types of objectives once the regenerated images are obtained

• Text supervision loss with CLIP (DejaVu-TS)

• Cyclic consistency loss (DejaVu-CL)

InputInput

RegeneratedRegenerated

CLIP 

encoding 
equalization

CLIP 

encoding 
equalization

Source:
• Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine 

learning. PMLR, 2021.
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Method : The DejaVu Shared Attention Module (DejaVu-SA)
Key Idea and implementation of the DejaVu loss

• Shared attention module to 

capture regeneration context

• Adding computations to the 

baseline model

• Shared computations to 

perform generation and the 

dense task.
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Results
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Results: Semantic Segmentation
ADE20KADE20K
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Results: Panoptic Segmentation

MS-COCOMS-COCO
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Results: Multi-Task Learning

NYUD-v2NYUD-v2

Source:
• Hong Li, Xialei Liu, and Hakan Bilen. Learning 

multiple dense prediction tasks from partially 
annotated data. In Proceedings of the IEEE/CVF 
Conference on Computer Vi sion and Pattern 
Recognition, pages 18879–18889, 2022.
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Redacting various bands of spectra

The error is lowest for middle-band redaction as most of the shape 
information is stored in the middle band

Studying the effect of redacting varying band of spectra for NYUD-v2 depth estimation

ImageImage

LowpassLowpass BandstopBandstop
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DejaVu-Shared Attention module

The DejaVu-SA module does increase computations, but provides a 
better accuracy-computation tradeoff compared to simply scaling up 
the base model

Varying the base model size v/s adding DejaVu-SA module
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