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Regeneration as a
pretraining task

» Masked image modeling - Masked
autoecoders

» Using masked autoencoders for
specific tasks (segmentation, depth
estimation, object detection)
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Sources:

* Li, Junnan, et al. "Align before fuse: Vision and language
representation learning with momentum distillation." Advances in
neural information processing systems 34 (2021): 9694-9705.
Pathak, Deepak, et al. "Context encoders: Feature learning by
inpainting." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016.

Train generative models
using a reconstruction
scheme

» Drop certain regions or mask
several pixels

 Using reconstruction loss to
enhance the representation power.

* Train the models with unsupervised
manner as like adversarial loss
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DejaVu on Semantic Segmentation

Initial Prediction Improved Prediction

o Conditional
Regeneration
ﬁ

Redacted Input (Spatial) Regenerated Input

DejaVu on Surface Normal Estimation

Initial Prediction Improved Prediction

Redacted Input (Spectral) Regenerated Input

Image Regeneration as an
auxiliary task

» Using image regeneration as an
auxiliary task to improve dense
predictions.

» We control the types of redactions
based on the dense task.

* Inpainting-based regeneration is a
good base for segmentation,
whereas spectral regeneration
Improves tasks such as surface
normal or depth estimation.
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Method : Types of redaction

Various redaction types based on the task

» Spectral redaction: Redacting frequencies

 Spatial redaction: Redacting pixels

Input image Spectral (Lowpass) Spectral (Bandstop)
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Method : The DejaVu loss function

Key Idea and implementation of the DejaVu loss
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Method : Conditional Regeneration Module (CRM)

Two types of CRM modules which were studies

 Forward Mode

* Recursive Mode

DejaVu Loss

Stacked Convolutions

Conditional
Regenerator

lRedacted Image

Regenerated
(a) Conditional Regeneration Module: Forward Mode (CRM-F)

4 Elementwise
| addition

DejaVu Loss
(at every step)

lRedacted Image Regenerated )

(b) Conditional Regeneration Module : Recursive Mode (CRM-R)
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Method : Further supervision with DejaVu

Two types of objectives once the regenerated images are obtained

 Text supervision loss with CLIP (DejaVu-TS)

* Cyclic consistency loss (DejaVu-CL)
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Source:
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine
learning. PMLR, 2021.




Method : The DejaVu Shared Attention Module (DejaVu-SA)

Key Idea and implementation of the DejaVu loss
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ADE20K
Results: Semantic Segmentation N e

+DejaVu PoolFormer-M48 | 43.3
UperNet [57] VIiT-B [21] 474
+DejaVu ViT-B 48.2
SETR-MLA-DeiT [Y6] ViT-B 46.2
Semantic FPN [40] ViT-B 48.3
DenseCLIP [67] ViT-B 498
+DejaVu ViT-B 50.3
Mask2Former [ | 0] Swin-L 56.0
+DejaVu Swin-L 56.5
Cityscapes
Backbone |Merh9d _
HRNet [75] 77.6 19
+DejaVu 78.8 19
HS3 [1] 78.1 19
. . HRNetI8 | 193 Fuse [4] 814 39
' 3 OCR [50] 80.7 39
s 1% +DejaVu 82.0 39
4 MiT-B5 \Segfurmer[\?] | 84.0 362
. - Mask2Former [16] | 83.3 251
SWIn-L 1521 g eMask [ 840 258
(b) Ground Truth  (¢) Baseline Prediction  (d) Our Prediction (e) Redacted Image (f) Regenerated Image eMask [34] :
ViT | ViT Adapter[14] | 849 1089
HRNet 347 175
+DejaVu 85.4 175
OCR 86.1 348
HRNet8 | | pejava 865 348
HMS [70] 86.7 893
+DejaVu 87.1 893




Results: Panoptic Segmentation

MS-COCO

Method | Backbone | POt "PO*f POt

MaX-Deeplab [67] | Max-S 484 53.0 41.5
MaskFormer [16] | Swin-T 477 S51.77 41.7
Mask2Former [15] | Swin-T 532 593 440

+DejaVu Swin-T | 543 60.5 449
MaX-Deeplab [67] | Max-L SI.LT  57.0 422
K-Net [52] Swin-L 546 60.2 46.0

MaskFormer [16] | Swin-L 527 585 440
Mask2Former [15] | Swin-L 576 642 475
+DejaVu Swin-L | 58.0 644 483

(a) Input (b) Ground Truth (¢) Baseline Prediction {d) Our Prediction




Results: Multi-Task Learning

NYUD-v2
Method Seg.(mloU)t Depth(aErr)|. [Novm{mErr)|

MTL [Y] | 3695 0.5510 29.51
+DejaVu 37.40 0.5426 28.74
DWA [30] 36.46 0.5429 29.45
GradNorm [13]|  37.19 0.5775 28.51
MTAN [50] 39.39 0.5696 28.89
MGDA [66)] 38.65 0.5572 28.89
XTC [47] 41.00 0.5148 28.58
+DejaVu 42.69 0.4996 27.49
Source:

. Hong Li, Xialei Liu, and Hakan Bilen. Learning
multiple dense prediction tasks from partially
annotated data. In Proceedings of the IEEE/CVF
Conference on Computer Vi sionand Pattern
Recognition, pages 18879-18889, 2022.

(a) Input (b) Ground Truth  (c) Baseline Prediction  (d) Our Prediction (e) Redacted Image () Regenerated Image
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Redacting various bands of spectra
Studying the effect of redacting varying band of spectra for NYUD-v2 depth estimation

Image
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The error is lowest for middle-band redaction as most of the shapef\
.

information is stored in the middle band |




DejaVu-Shared Attention module

Varying the base model size v/s adding DejaVu-SA module

a0.5 BO.5
80.1 80.1
—_ 79.9 .- 799 o=
— = : “*""HRNet18 + DejaVu-SA
.~FiRNet18 + DejaVu-SA - DejaVu
E ?g 4_,.-*""-'*'“I J ?9-4 ,..-*"r
L 3 L
E
>, 790 78.8 79.0 78.8
= 785__-~~TiRb ey
= -~ HRNet20 B3 HRNet20
S .~ HRNet19 Vol
< ??.E’,-ﬁ“f 715’__,"'
T v 17.5 b d
HRNet18 HRNet18
5] 21 23 4.0 4.5 5.0
Model Complexity (GMacs) Model Size (Params (M))

The DejaVu-SA module does increase computations, but provides a

better accuracy-computation tradeoff compared to simply scaling up
the base model




@ Generative models
as an auxiliary task

@ Generative models
for pre-training

ArXiv: https://arxiv.org/pdf/2303.01573.
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