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Figure 1. An overview of 27 corruptions for 3D object detection, which are categorized into weather, sensor, motion, object, and alignment
levels. As shown, some corruptions are effective for one modality, while the others are applied to both (e.g., Snow, Moving Object, Shear).

We conduct large-scale experiments to compare the cor-
ruption robustness of existing 3D object detection models.
Specifically, we evaluate 11 models on KITTI-C, 10 models
on nuScenes-C, and 3 models on Waymo-C. The models are
of great variety with different input modalities, representa-
tion methods, and detection heads. Based on the evaluation
results, we find that: 1) the corruption robustness of 3D ob-
ject detectors is highly correlated with their clean accuracy;
2) motion-level corruptions impair the model performance
most, while being rarely explored before; 3) LiDAR-camera
fusion models are more resistant to corruptions, but there is
a trade-off between robustness under image corruptions and
point cloud corruptions of fusion models. More discussions
are provided in Sec. 6. Moreover, we study data augmenta-
tion strategies [14, 64, 67] as potential solutions to improve
corruption robustness, but find that they provide a little ro-
bustness gain, leaving robustness enhancement of 3D object
detection an open problem for future research.

2. Related Work

2.1. 3D Object Detection

Based on the input modality, we categorize 3D object de-
tection models into LiDAR-only, camera-only, and LiDAR-
camera fusion models.

LiDAR-only models: LiDAR point clouds are sparse,
irregular, and unordered by nature. To learn useful represen-
tations, voxel-based methods project point clouds to com-
pact grids. Typically, VoxelNet [69] rasterizes point clouds
into voxels, which are processed by PointNets [43] and 3D
CNNs. To speed up, SECOND [60] introduces sparse 3D
convolutions and PointPillars [29] elongates voxels into pil-
lars. Other works exploit information of object parts [49]
or shape [70] to improve the performance. On the other
hand, point-based methods take raw point clouds as inputs
and make predictions on each point. PointRCNN [48] pro-
poses a two-stage framework that first generates 3D pro-

posals and then refines the proposals in the canonical co-
ordinates. 3DSSD [61] is a lightweight one-stage detector
with a fusion sampling strategy. To have the best of both
worlds, point-voxel-based methods are then explored. PV-
RCNN [47] integrates 3D voxel CNN and PointNet-based
set abstraction to efficiently create high-quality proposals.

Camera-only models: 3D object detection based on im-
ages is challenging due to the lack of depth information, but
attracts extensive attention considering the advantage of low
cost. The most straightforward approach is to take monocu-
lar detection methods [10, 36, 39, 56, 57] and apply post-
processing across cameras. For example, Mono3D [10]
generates 3D object proposals scored by semantic features.
SMOKE [36] combines a single keypoint estimation with
regressed 3D variables. To address the limitation of post-
processing in monocular methods, multi-view methods fuse
information from all cameras in the intermediate layers.
DETR3D [58] adopts a transformer-based detector [8] that
fetches the image features by projecting object queries onto
images. BEVFormer [33] exploits spatial-temporal infor-
mation from multi-view images based on BEV queries.

LiDAR-camera fusion models: To leverage the com-
plementary information from LiDAR and camera inputs, fu-
sion methods are also extensively studied. Following [35],
we classify the newly developed methods into point-level,
proposal-level, and unified representation fusion methods.
Point-level methods augment LiDAR point clouds with se-
mantic image features and then apply existing LiDAR-only
models for 3D detection, including PointPainting [53], EP-
Net [26], PointAugmenting [54], Focals Conv [13], etc.
Proposal-level fusion methods [11, 42] generate 3D object
proposals and integrate image features into these proposals.
FUTR3D [12] and TransFusion [2] employ a query-based
transformer decoder, which fuses image features with object
queries. Moreover, BEVFusion [35] unifies the image fea-
ture and point cloud feature in a BEV representation space,
which stands out as a new fusion strategy.

2

We build corruption robustness benchmarks of 27 corruption types for
3D object detection in autonomous driving.



Background
Autonomous driving may encounter real-world corruptions caused by adverse
weathers, sensor noises, uncommon objects, etc., leading to inferior performance
and causing safety problems. The existing datasets are not comprehensive
enough due to high collection costs of rare data.

Adverse weather (Pitropov et al., 2020) Corner cases (Li et al., 2022)



Background

There are existing benchmarks to evaluate the corruption robustness on
image classification and point cloud recognition. But they do not consider
the real-world scenarios in autonomous driving.

Image corruptions (Hendrycks and Dietterich, 2019) Point cloud corruptions (Ren et al., 2022)



Corruptions
We design 27 types of common corruptions for both LiDAR and camera 
inputs considering real-world driving scenarios. 
• Weather-level: Snow, Rain, Fog, Strong sunlight
• Sensor-level: Density decrease, LiDAR crosstalk, FOV lost, etc.
• Motion-level: Motion compensation, Moving objects, Motion blur
• Object-level: Local density decrease, Shear, Scale, Rotation, etc.
• Alignment-level: Spatial misalignment, Temporal misalignment
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Figure 2. Visualization of typical corruption types of each level in our benchmark (best viewed when zoomed in). Full visualization results
of all corruptions are shown in Appendix A.2.

practical in the real world and studied for the first time. Ve-
hicle ego-motion induces distortions to point clouds since
the points in a frame are not obtained in the same coordi-
nate system [68]. To obtain accurate point clouds, motion
compensation is typically used with the aid of the localiza-
tion information [6, 17]. However, this process can intro-
duce noises, which we call motion compensation corrup-
tion, simulated by adding small Gaussian noises to the rota-
tion and translation matrices of the vehicle’s ego pose. The
moving object corruption denotes the case that an object is
moving rapidly in the scene. It can cause shifting points
within the object’s 3D bounding box [59] and blur the im-
age patch of the object. The last corruption is motion blur
on camera images, which is caused by driving too fast.

Object-level corruptions: Objects in the real world al-
ways come in a variety of shapes and materials [9,31], mak-
ing it challenging to correctly recognize them. The viewing
direction can also lead to wrong recognition of objects [16].
Based on this, we introduce 8 object-level corruptions: Lo-
cal Density Decrease, Local Cutout, Local Gaussian Noise,
Local Uniform Noise, Local Impluse Noise, Shear, Scale,
and Rotation. The first five corruptions are only applied to
LiDAR point clouds to simulate the distortions caused by
different object materials or occlusion. As their names in-
dicate, these corruptions only make changes to local sets of
points within the objects’ 3D bounding boxes. The last three
corruptions simulate shape deformation of objects, and Ro-
tation can also simulate different view directions of objects.
They can affect both LiDAR and camera inputs. To make
consistent distortions to two modalities, we apply the same
transformation of shear, scale, or rotation to both points and
image patches belonging to the objects in the scene.

Alignment-level corruptions: It was typically assumed
that LiDAR and camera inputs are well aligned before feed-
ing to the fusion models. However, this assumption can be
invalid during long-time driving, e.g., the collection of the
ONCE dataset [37] needs re-calibration almost every day to
avoid misalignment between different sensors. In practice,
an autonomous vehicle can encounter Spatial Misalignment
and Temporal Misalignment [63]. Spatial misalignment can
be caused by sensor vibration due to bumps of the vehicle.
We simulate it by adding random noises to the calibration

matrices. Temporal misalignment happens when the data
is stuck or delayed for a sensor. We keep the input of one
modality the same as that at the previous timestamp to sim-
ulate temporal misalignment between the two modalities.

Discussion about the gap between synthetic and real-

world corruptions. Real-world corruptions can come from
multiple and diverse sources. For example, an autonomous
vehicle can encounter adverse weather and uncommon ob-
jects at the same time, leading to much more complicated
corruptions. Although it is impossible to enumerate all real-
world corruptions, we systematically design 27 corruption
types grouped into five levels, which can serve as a practical
testbed to perform controllable robustness evaluation. Espe-
cially, for weather-level corruptions, we adopt the state-of-
the-art methods for simulation, which are shown to approxi-
mate real data well [21,22]. Although there inevitably exists
a gap, we validate that the model performance on synthetic
weathers are consistent with that on real data under adverse
weathers, as shown in Appendix A.3.

4. Corruption Robustness Benchmarks

To comprehensively evaluate the corruption robustness
of 3D object detection models, we establish three corrup-
tion robustness benchmarks based on the most widely used
datasets in autonomous driving—KITTI [17], nuScenes [6],
and Waymo [51]. We apply the aforementioned corruptions
to the validation sets of these datasets and obtain KITTI-

C, nuScenes-C, and Waymo-C, respectively. Note that al-
though several corruptions naturally appear in few samples
of the datasets, we still apply the synthetic corruptions to
all data to fairly compare model robustness under different
corruptions and reduce the efforts of filtering data. Besides,
we build a unified toolkit comprising of all corruptions, that
can be used for other datasets as well. Below we introduce
the dataset details, evaluation metrics, and evaluated models
of the three benchmarks, respectively.

4.1. KITTI-C

The KITTI dataset [17] contains 3712 training, 3769 val-
idation, and 7518 test samples. As we do not have access
to the test set, KITTI-C is constructed upon the validation
set. Among the corruptions, we do not include FOV Lost,

4



Benchmarks

• KITTI-C:

AP#$% =
1
|)|*+∈-

1
5*/01

2
AP+,/ ; RCE = AP#89:; − AP#$%

AP#89:;
• AP+,/ denotes the performance under corruption = at severity level >.
• AP#89:; denotes the performance on clean dataset.

• nuScenes-C: we measure mAP#$% and NDS#$%.

• Waymo-C: we measure mAP#$% and mAPH#$%.
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Model Modality Representation Detection
SECOND [60] LiDAR-only voxel-based one-stage

PointPillars [29] LiDAR-only voxel-based one-stage
PointRCNN [48] LiDAR-only point-based two-stage

Part-A2 [49] LiDAR-only voxel-based two-stage
PV-RCNN [47] LiDAR-only point-voxel-based two-stage

3DSSD [61] LiDAR-only point-based one-stage
SMOKE [36] camera-only monocular one-stage

PGD [55] camera-only monocular one-stage
ImVoxelNet [45] camera-only monocular one-stage

EPNet [26] fusion point-level two-stage
Focals Conv [13] fusion point-level two-stage

(a) Evaluated models on KITTI-C.

Model Modality Representation Detection
PointPillars [29] LiDAR-only voxel-based one-stage

SSN [70] LiDAR-only voxel-based one-stage
CenterPoint [62] LiDAR-only voxel-based two-stage

FCOS3D [56] camera-only monocular one-stage
PGD [55] camera-only monocular one-stage

DETR3D [58] camera-only multi-view query-based
BEVFormer [33] camera-only multi-view query-based

FUTR3D [12] fusion proposal-level query-based
TransFusion [2] fusion proposal-level query-based
BEVFusion [35] fusion unified query-based

(b) Evaluated models on nuScenes-C.
Table 2. The 3D object detection models adopted for corruption robustness evaluation on KITTI-C and nuScenes-C. We show the input
modality, representation learning method (see Sec. 2.1), and detection head of each model.

Motion Compensation and Temporal Misalignment since:
1) 3D object detection models usually take front-view point
clouds of 90� FOV as inputs since the KITTI dataset only
provides box annotations in front of the vehicle; 2) the lo-
calization and timestamp information of each frame is not
provided in the dataset. Therefore, there are 24 corruptions
in KITTI-C with 5 severities for each following [25].

The standard evaluation of KITTI 3D object detection is
performed on three categories: Car, Pedestrian and Cyclist
at three levels of difficulty: Easy, Moderate and Hard. The
evaluation metric is the Average Precision (AP) with 40 re-
call positions at an IoU threshold 0.7 for cars and 0.5 for
pedestrians/cyclists. We denote model performance on the
original validation set as APclean. For each corruption type
c at each severity s, we adopt the same metric to measure
model performance as APc,s. Then, the corruption robust-
ness of a model is calculated by averaging over all corrup-
tion types and severities as

APcor =
1
|C|

X

c2C

1
5

5X

s=1

APc,s, (1)

where C is the set of corruptions in evaluation. Note that for
different kinds of 3D object detectors, the set of corruptions
can be different (e.g., we do not evaluate camera noises for
LiDAR-only models), thus the results of APcor are not di-
rectly comparable between different kinds of models and we
perform a fine-grained analysis under each corruption. We
also calculate relative corruption error (RCE) by measuring
the percentage of performance drop as

RCEc,s =
APclean �APc,s

APclean
; RCE =

APclean �APcor

APclean
. (2)

We select 11 representative 3D object detection mod-
els trained on KITTI, including 6 LiDAR-only models:
SECOND [60], PointPillars [29], PointRCNN [48], Part-
A2 [49], PV-RCNN [47], and 3DSSD [61]; 3 camera-only
models: SMOKE [36], PGD [55], and ImVoxelNet [45];
and 2 LiDAR-camera fusion models: EPNet [26] and Fo-
cals Conv [13]. The details regarding their representations
and detection heads are shown in Table 2(a).

4.2. nuScenes-C

The nuScenes dataset [6] contains 1000 sequences of ap-
proximately 20s duration with a LiDAR frequency of 20
FPS. The box annotations are provided for every 0.5s. Each
frame has one point cloud and six images covering 360�

horizontal FOV. In total, there are 40k frames which are
split into 28k, 6k, 6k for training, validation, and testing. As
the dataset provides full annotations and information of ve-
hicle pose and timestamp, we can simulate all corruptions.
Thus, we apply all 27 corruptions to the nuScenes validation
set with 5 severities to obtain nuScenes-C.

For 3D object detection, the main evaluation metrics
are mean Average Precision (mAP) and nuScenes detection
score (NDS) computed on 10 object categories. The mAP
is calculated using the 2D center distance on the ground
plane instead of the 3D IoU. The NDS metric consolidates
mAP and other aspects (e.g., scale, orientation) into a uni-
fied score. Similar to KITTI-C, we denote model perfor-
mance on the validation set as mAPclean and NDSclean, and
measure the corruption robustness mAPcor and NDScor by
averaging over all corruptions and severities. We also com-
pute the relative corruption error RCE under both mAP and
NDS metrics similar to Eq. (2).

On nuScenes-C, we select 10 3D detectors, including 3
LiDAR-only models: PointPillars [29], SSN [70], and Cen-
terPoint [62]; 4 camera-only models: FCOS3D [56], PGD
[55], DETR3D [58], and BEVFormer [33]; and 3 LiDAR-
camera fusion models: FUTR3D [12], TransFusion [2], and
BEVFusion [35]. The model details are shown in Table 2(b).

4.3. Waymo-C

The Waymo open dataset [51] consists of 798 scenes for
training and 202 scenes for validation. Similar to nuScenes-
C, Waymo-C is constructed by applying all 27 corruptions
to the Waymo validation set with 5 severities. The offi-
cial evaluation metrics are mAP and mAPH by taking the
heading accuracy into consideration. We similarly calcu-
late the corruption robustness and relative corruption er-
ror on Waymo-C. Due to the license agreement, there are

5

We select representative 3D object detection models including LiDAR-only,
camera-only, and LiDAR-camera fusion models.



Evaluation on KITTI-C

• Weather-level and motion-level corruptions affect the performance most.
• Fusion models have better performance under LiDAR corruptions, but have

worst performance under LiDAR-camera corruptions.
• There may exist a trade-off between corruption robustness and efficiency.



Evaluation on nuScenes-C

• Motion-level corruptions affect the performance most.
• Camera-only models are more vulnerable under corruptions.
• There is a trade-off of corruption robustness of fusion models under camera and

LiDAR corruptions, since different models have varying reliance on modalities.
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