
IterativePFN:
True Iterative Point Cloud Filtering

Dasith de Silva Edirimuni1 Xuequan Lu1 Zhiwen Shao2
Gang Li1 Antonio Robles-Kelly1,4 Ying He3

1Deakin University, 2China University of Mining and Technology, 3Nanyang Technological
University, 4Defence Science and Technology Group, Australia

Poster: WED-PM-112

1 / 17



At a glance

Current methods ↔ iterative filtering only at test time
Our method ↔ models iterative filtering at train + test time

Adaptive ground truth loss
Generalized patch stitching mechanism

2 / 17



Overview

Filtering/denoising is a fundamental point cloud processing task

3 / 17



Overview

Filtering/denoising is a fundamental point cloud processing task

3 / 17



Overview

Filtering/denoising is a fundamental point cloud processing task

3 / 17



Current works

Displacement-based methods → Pointfilter, IEEE TVCG, 2021

4 / 17



Current works

Displacement-based methods → Pointfilter, IEEE TVCG, 2021

Probability-based methods → ScoreDenoise, ICCV, 2021

4 / 17



Current works

Displacement-based methods → Pointfilter, IEEE TVCG, 2021

Probability-based methods → ScoreDenoise, ICCV, 2021

Resampling-based methods → DMRDenoise, ACM MM, 2020

4 / 17



Current works

Displacement-based methods infer displacements to filter noisy points

Their filtering objective is expressed as,

x̃xxi = xxxi + dddi (1)

At test-time → iterate process:

x̃xx(t)i = x̃xx(t−1)
i + ddd(t)i , t = 1, · · · ,T (2)

Probabilistic score-based methods infer Si(xxx) → ∇xxx log[(p ∗ n)(xxxi)]

x̃xx(t)i = x̃xx(t−1)
i + α(t)Ei(x̃xx(t−1)

i ), t = 1, · · · ,T (3)

where Ei(xxx) = (1/K)
∑

xxxj∈kNN(xxxi)
Sj(xxx).

5 / 17



Current works

Displacement-based methods infer displacements to filter noisy points

Their filtering objective is expressed as,

x̃xxi = xxxi + dddi (1)

At test-time → iterate process:

x̃xx(t)i = x̃xx(t−1)
i + ddd(t)i , t = 1, · · · ,T (2)

Probabilistic score-based methods infer Si(xxx) → ∇xxx log[(p ∗ n)(xxxi)]

x̃xx(t)i = x̃xx(t−1)
i + α(t)Ei(x̃xx(t−1)

i ), t = 1, · · · ,T (3)

where Ei(xxx) = (1/K)
∑

xxxj∈kNN(xxxi)
Sj(xxx).

5 / 17



Current works

Displacement-based methods infer displacements to filter noisy points

Their filtering objective is expressed as,

x̃xxi = xxxi + dddi (1)

At test-time → iterate process:

x̃xx(t)i = x̃xx(t−1)
i + ddd(t)i , t = 1, · · · ,T (2)

Probabilistic score-based methods infer Si(xxx) → ∇xxx log[(p ∗ n)(xxxi)]

x̃xx(t)i = x̃xx(t−1)
i + α(t)Ei(x̃xx(t−1)

i ), t = 1, · · · ,T (3)

where Ei(xxx) = (1/K)
∑

xxxj∈kNN(xxxi)
Sj(xxx).

5 / 17



Current works

Displacement-based methods infer displacements to filter noisy points

Their filtering objective is expressed as,

x̃xxi = xxxi + dddi (1)

At test-time → iterate process:

x̃xx(t)i = x̃xx(t−1)
i + ddd(t)i , t = 1, · · · ,T (2)

Probabilistic score-based methods infer Si(xxx) → ∇xxx log[(p ∗ n)(xxxi)]

x̃xx(t)i = x̃xx(t−1)
i + α(t)Ei(x̃xx(t−1)

i ), t = 1, · · · ,T (3)

where Ei(xxx) = (1/K)
∑

xxxj∈kNN(xxxi)
Sj(xxx).

5 / 17



Motivation

Current works have two main limitations:
1 Iterative only at test time
2 Filtered results do not quickly converge to the clean surface

6 / 17



Motivation

Current works have two main limitations:
1 Iterative only at test time
2 Filtered results do not quickly converge to the clean surface

6 / 17



Motivation

Current works have two main limitations:
1 Iterative only at test time
2 Filtered results do not quickly converge to the clean surface

6 / 17



Motivation

Current works have two main limitations:
1 Iterative only at test time
2 Filtered results do not quickly converge to the clean surface

6 / 17



IterativePFN network

We propose an iterative filtering mechanism that is truly iterative at train
and test times

7 / 17



IterativePFN network

We propose an iterative filtering mechanism that is truly iterative at train
and test times

7 / 17



IterativePFN network

We propose an iterative filtering mechanism that is truly iterative at train
and test times

7 / 17



IterativePFN network

We propose an iterative filtering mechanism that is truly iterative at train
and test times

Each IterationModule only needs filtered positions from the previous
iteration as input

x̃xx(t)i = x̃xx(t−1)
i + ddd(t)i , t = 1, · · · ,T (4)

7 / 17



Pre-processing

8 / 17



Pre-processing

wi =
exp

(
−∥xxxi − xxxr∥22 /r2s

)
∑

i exp
(
−∥xxxi − xxxr∥22 /r2s

)

8 / 17



Training objective: Adaptive Ground Truth loss function

LPCN
i = αmin

xxxj∈Y
∥dddi − (xxxj − xxxi)∥22 + (1− α)max

xxxj∈Y
∥dddi − (xxxj − xxxi)∥22

9 / 17



Training objective: Adaptive Ground Truth loss function

L(τ)
i (Y(τ)) =

∥∥∥ddd(τ)i −
[
NN(xxx(τ−1)

i ,Y(τ))− xxx(τ−1)
i

]∥∥∥2
2
,

9 / 17



Training objective: Adaptive Ground Truth loss function

L(τ)
i (Y(τ)) =

∥∥∥ddd(τ)i −
[
NN(xxx(τ−1)

i ,Y(τ))− xxx(τ−1)
i

]∥∥∥2
2
,

Gaussian weights based on position from patch center

wi =
exp

(
−∥xxxi − xxxr∥22 /r2s

)
∑

i exp
(
−∥xxxi − xxxr∥22 /r2s

) ,
Single IterationModule loss ↔ weighted average across points

L(τ) =
∑

i
wiL(τ)

i ,

Sum loss contributions across all ItMs → allows joint training

La =

T∑
τ=1

L(τ).

10 / 17



Training objective: Adaptive Ground Truth loss function

L(τ)
i (Y(τ)) =

∥∥∥ddd(τ)i −
[
NN(xxx(τ−1)

i ,Y(τ))− xxx(τ−1)
i

]∥∥∥2
2
,

Gaussian weights based on position from patch center

wi =
exp

(
−∥xxxi − xxxr∥22 /r2s

)
∑

i exp
(
−∥xxxi − xxxr∥22 /r2s

) ,
Single IterationModule loss ↔ weighted average across points

L(τ) =
∑

i
wiL(τ)

i ,

Sum loss contributions across all ItMs → allows joint training

La =

T∑
τ=1

L(τ).

10 / 17



Training objective: Adaptive Ground Truth loss function

L(τ)
i (Y(τ)) =

∥∥∥ddd(τ)i −
[
NN(xxx(τ−1)

i ,Y(τ))− xxx(τ−1)
i

]∥∥∥2
2
,

Gaussian weights based on position from patch center

wi =
exp

(
−∥xxxi − xxxr∥22 /r2s

)
∑

i exp
(
−∥xxxi − xxxr∥22 /r2s

) ,
Single IterationModule loss ↔ weighted average across points

L(τ) =
∑

i
wiL(τ)

i ,

Sum loss contributions across all ItMs → allows joint training

La =

T∑
τ=1

L(τ).

10 / 17



Datasets

We use both synthetic and real-world scanned data to analyze our
method’s performance

Training set (40 models)
Gaussian noise for training
3 resolutions (10K, 30K, 50K)
Noise scales 0.5% - 2% of BSR

Test set (169 models)
20 synthetic noisy models
2 resolutions (10K, 50K)
Noise scales 1% - 2.5% of BSR
5 different noise patterns
4 raw outdoor laser-scanned scenes
72 + 73 raw Kinect v1 and Kinect v2
scanned models Example train and test

models from synthetic
PUNet dataseta

aYu et al. PU-Net: Point Cloud Upsampling
Network, CVPR 2018

11 / 17



Results on PUNet test set

First we look at results on our synthetic dataset:

Our method effectively filters both complex shapes such as Casting
and simpler shapes such as Fandisk

12 / 17



Results on PUNet test set

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 36.9 16.03 79.39 47.72 105.02 70.03 18.69 12.82 50.48 41.36 72.49 62.03
PCN 36.86 15.99 79.26 47.59 104.86 69.87 11.03 6.46 19.78 13.7 32.03 24.86
GPDNet 23.1 7.14 42.84 18.55 58.37 30.66 10.49 6.35 32.88 25.03 50.85 41.34
DMRDenoise 47.12 21.96 50.85 25.23 52.77 26.69 12.05 7.62 14.43 9.7 16.96 11.9
PDFlow 21.26 6.74 32.46 13.24 36.27 17.02 6.51 4.16 12.7 9.21 18.74 14.26
ScoreDenoise 25.22 7.54 36.83 13.8 42.32 19.04 7.16 4.0 12.89 8.33 14.45 9.58
Pointfilter 24.61 7.3 35.34 11.55 40.99 15.05 7.58 4.32 9.07 5.07 10.99 6.29
Ours 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

Table: Filtering results on the PUNet dataset. CD and P2M distances are
multiplied by 105

Our method outperforms others across resolutions and noise scales

12 / 17



Visual results on raw laser-scanned data

We next look at results on the Rue Madame dataset

13 / 17



Visual results on raw laser-scanned data

We next look at results on the Rue Madame dataset

Our method effectively filters points while others smear sharp features
or leave behind outliers

13 / 17



Ablation: Iteration number and alternative Fixed GT loss

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

La & 1 it. 21.95 5.42 32.38 9.55 36.98 12.71
La & 2 it. 21.13 5.14 30.82 8.67 34.33 11.0
La & 4 it. 20.56 5.01 30.43 8.45 33.52 10.45
La & 8 it. 19.78 4.9 30.12 8.3 33.88 10.78
La & 12 it. 20.49 5.23 30.64 8.87 34.46 11.25
La & DPFN 21.03 5.05 30.96 8.53 35.2 11.4
Lb & 4 it. 20.64 5.04 30.59 8.54 34.17 10.87

Table: Ablation results for different iteration numbers and different loss functions.
CD and P2M distances are multiplied by 105

At high iteration numbers → the network over-specializes on the
training noise
4 iterations is optimal
To investigate impact of AGT loss La, we consider

Lb =

T∑
τ=1

[∑
i

wi

(∥∥∥ddd(τ)i − (NN(xxx(τ−1)
i ,Y)− xxx(τ−1)

i )
∥∥∥2
2

)]
,

14 / 17



Ablation: Iteration number and alternative Fixed GT loss

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

La & 1 it. 21.95 5.42 32.38 9.55 36.98 12.71
La & 2 it. 21.13 5.14 30.82 8.67 34.33 11.0
La & 4 it. 20.56 5.01 30.43 8.45 33.52 10.45
La & 8 it. 19.78 4.9 30.12 8.3 33.88 10.78
La & 12 it. 20.49 5.23 30.64 8.87 34.46 11.25
La & DPFN 21.03 5.05 30.96 8.53 35.2 11.4
Lb & 4 it. 20.64 5.04 30.59 8.54 34.17 10.87

Table: Ablation results for different iteration numbers and different loss functions.
CD and P2M distances are multiplied by 105

At high iteration numbers → the network over-specializes on the
training noise
4 iterations is optimal
To investigate impact of AGT loss La, we consider

Lb =

T∑
τ=1

[∑
i

wi

(∥∥∥ddd(τ)i − (NN(xxx(τ−1)
i ,Y)− xxx(τ−1)

i )
∥∥∥2
2

)]
,

14 / 17



Ablation: Iteration number and alternative Fixed GT loss

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

La & 1 it. 21.95 5.42 32.38 9.55 36.98 12.71
La & 2 it. 21.13 5.14 30.82 8.67 34.33 11.0
La & 4 it. 20.56 5.01 30.43 8.45 33.52 10.45
La & 8 it. 19.78 4.9 30.12 8.3 33.88 10.78
La & 12 it. 20.49 5.23 30.64 8.87 34.46 11.25
La & DPFN 21.03 5.05 30.96 8.53 35.2 11.4
Lb & 4 it. 20.64 5.04 30.59 8.54 34.17 10.87

Table: Ablation results for different iteration numbers and different loss functions.
CD and P2M distances are multiplied by 105

At high iteration numbers → the network over-specializes on the
training noise
4 iterations is optimal
To investigate impact of AGT loss La, we consider

Lb =

T∑
τ=1

[∑
i

wi

(∥∥∥ddd(τ)i − (NN(xxx(τ−1)
i ,Y)− xxx(τ−1)

i )
∥∥∥2
2

)]
,

14 / 17



Ablation: Iteration number and alternative Fixed GT loss

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

La & 1 it. 21.95 5.42 32.38 9.55 36.98 12.71
La & 2 it. 21.13 5.14 30.82 8.67 34.33 11.0
La & 4 it. 20.56 5.01 30.43 8.45 33.52 10.45
La & 8 it. 19.78 4.9 30.12 8.3 33.88 10.78
La & 12 it. 20.49 5.23 30.64 8.87 34.46 11.25
La & DPFN 21.03 5.05 30.96 8.53 35.2 11.4
Lb & 4 it. 20.64 5.04 30.59 8.54 34.17 10.87

Table: Ablation results for different iteration numbers and different loss functions.
CD and P2M distances are multiplied by 105

At high iteration numbers → the network over-specializes on the
training noise
4 iterations is optimal
To investigate impact of AGT loss La, we consider

Lb =

T∑
τ=1

[∑
i

wi

(∥∥∥ddd(τ)i − (NN(xxx(τ−1)
i ,Y)− xxx(τ−1)

i )
∥∥∥2
2

)]
,

14 / 17



Ablation: With/without patch stitching

Figure: Visual results of a filtered patch, with and without stitching

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

without PS 21.19 5.45 32.38 10.2 38.67 14.98
with PS 20.56 5.01 30.43 8.45 33.52 10.45

Table: Ablation results with and without patch stitching (PS). CD and P2M
distances are multiplied by 105

15 / 17



Limitations and future work

Generating adaptive targets requires noise distribution that is easy to
replicate
Generalize approach to use noisy data simulating real world noise

16 / 17



Thanks for watching!

IterativePFN: True Iterative Point Cloud Filtering

Dasith de Silva Edirimuni1 Xuequan Lu1 Zhiwen Shao2
Gang Li1 Antonio Robles-Kelly1,4 Ying He3

1Deakin University, 2China University of Mining and Technology, 3Nanyang
Technological University, 4Defence Science and Technology Group, Australia

Please visit our project page for more information:
https://ddsediri.github.io/projects/IterativePFN
Code is available at:
https://github.com/ddsediri/IterativePFN

17 / 17

https://ddsediri.github.io/projects/IterativePFN
https://github.com/ddsediri/IterativePFN

	anm0: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


