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Semi-Supervised Domain Adaptation
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Goal:

e Extract invariant features across both domains

e Transfer knowledge from a source domain to another target domain



Challenge

e Domain shift

o There is a misalignment between the 7th class of the source data and the 59th class of the

target data.
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Proposed Framework

Source Label Adaptation (SLA)

® A novel source-adaptive paradigm for Semi-Supervised Domain Adaptation.

Source Label Adaptation (Ours)

Q <> source data

‘ ‘ target centers

Q Q corrected
source data Find the pseudo target Trained by the

centers of target data Correct source labels corrected labels



Key ldeas

® View the source data as a version of the target Q Source Data

data with noisy labels ° .
<> Target Data

® Correct the source labels with the estimated - ° @

target centers in the current feature space.
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Source Label Adaptation (SLA)

The framework can be easily coupled with the current SOTA SSDA methods.

Mix with the adapted label

pseudo centers
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Experiment
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Motivation

e Goal: Find an ideal model g* that can minimize the target risk

e For each source data x°, g*(x°) is the most suitable label that best matches
the ideal target space.
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Source Label Adaptation

e \We propose to adapt the original source label y® to the ideal label g*(x?®).

Label Adaptation
S W k(S
y > 9" (x%)
Noisy Clean

e However, we are not able to access the ideal model g*.

o Approximate it through the current estimation of the unlabeled target data



Prototypical Network (Protonet)

e Find the center ¢;, of class k over a certain
N Q Source Data
feature space. [

Target Data

e Make predictions by the distance between

the data point and each center. -

exp(—d(f(x),¢cx))
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Protonet with Target Centers

e \We have access to a few target data.

’“\ Q Source Data
/ \

4 VN

o Protonet with Target Centers

Target Data
A

e Challenge

o We have only 1 or 3 shot per class =

o The estimation might be inaccurate



Protonet with Pseudo Centers (PPC)

1. Determine the pseudo label for each

unlabeled target data x;*.

Q <> source data

0
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y;' = arg mlgxg(XE‘)k

2. Find the pseudo center ¢, for each class k, ‘ ‘
target centers
and construct a prototypical network P
P yp O <> corrected Find the pseudo target
source data centers of target data

based on these centers.



Distance Comparison

From / To labeled target centers pseudo centers

1deal centers 10.02 4.06

Table 3. Average L2 Distance from ideal centers to labeled target
centers / pseudo centers over the feature space trained by S+T (3-
shot Office-Home A — C with ResNet34).



Label Adaptation Loss

e Protonet with Pseudo Centers is still an estimation of the target view.
e \We introduce a hyper-parameter a to regularize the level of trust to this estimation.

e The adapted label ¥ is defined as follow:

adapted label

=S S S
(1-a)y;+a m_ suggested adapted label from PPC

® \We propose a label adaptation loss to replace the typical source loss function.

O H measures the cross entropy between two distributions.
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Combine with SOTA SSDA Algorithms

e Typical SSDA algorithms usually attempt to explore better use of the unlabeled target
data.

Lsspa = Ls + Lo 4 Ly,

e Our framework, on the other hand, explores the training of source data with adapted
labels to better align with the ideal target space.

Lsspa w/sta = Ls ]F Lo+ Ly

® Thus, we can easily apply our framework to other SSDA algorithms, further boost their
performance.




Source Label Adaptation (SLA)

Mix with the adapted label
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Source Label Adaptation (SLA)

Mix with the adapted label
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Source Label Adaptation (SLA)

Mix with the adapted label

Source data
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Implementation Details

e Warmup Stage
o Our label adaptation framework relies on the quality of the predicted pseudo labels.
o The prediction from the initial model can be noisy.

o We introduce a warmup stage W to obtain more stable pseudo labels.

e yf lfGSW
Yi = (1—a) yi+a- Péf (x7) otherwise



Implementation Details

e Dynamic Update
o During training phase, the feature space keeps changing for every iteration.

o  Without updating centers, the quality of the estimated pseudo centers would

progressively deteriorate.

o At certain intervals, we re-estimate the pseudo labels and centers over current

feature space.



Experiments on Major SSDA Datasets

R—->C R—>P P->C C—>S S—P R—>S P—-R Mean
Method 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN [5] 582 59.8 614 628 563 596 528 554 574 599 522 549 703 722 58.4 60.7
ENT [6] 652 71.0 659 692 654 71.1 546 600 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
APE [10] 704 766 70.8 72.1 729 767 56.7 63.1 64.5 66.1 63.0 67.8 76.6 794 67.6 71.7
DECOTA [31] 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
MCL [30] 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5
MME [21] 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 619 76.1 78.5 66.4 68.9
MME + SLA (ours) 71.8 73.3 68.2 70.1 70.4 72.7 59.3 63.4 64.9 67.3 61.8 63.9 77.2 79.6 68.8 70.0
CDAC [12] 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
CDAC + SLA (ours) 79.8 816 756 760 774 803 68.1 713 717 73.5 717 735 80.4 82.5 75.0 76.9
Table 4. Accuracy (%) on DomainNet for 1-shot and 3-shot Semi-Supervised Domain Adaptation (ResNet34).
Method A—-C A—P A—R C—A C—P C—R P—A P—C P—R R—A R—-C R—P Mean
Three-shot
S+T 54.0 73.1 74.2 57.6 72.3 68.3 63.5 53.8 73.1 67.8 55.7 80.8 66.2
DANN [5] 54.7 68.3 73.8 55.1 67.5 67.1 56.6 51.8 69.2 65.2 57.3 75.5 63.5
ENT [6] 61.3 79.5 79.1 64.7 79.1 76.4 63.9 60.5 79.9 70.2 62.6 85.7 71.9
APE [10] 63.9 81.1 80.2 66.6 79.9 76.8 66.1 65.2 82.0 73.4 66.4 86.2 74.0
DECOTA [311 64.0 81.8 80.5 68.0 83.2 79.0 69.9 68.0 82.1 74.0 70.4 87.7 75.7
MME [21] 63.6 79.0 79.7 67.2 79.3 76.6 65.5 64.6 80.1 71.3 64.6 85.5 73.1
MME + SLA (ours) 65.9 81.1 80.5 69.2 81.9 79.4 69.7 67.4 81.9 74.7 68.4 87.4 75.6
CDAC [12] 65.9 80.3 80.6 67.4 81.4 80.2 67.5 67.0 81.9 722 67.8 85.6 74.8
CDAC + SLA (ours) 67.3 82.6 81.4 69.2 82.1 80.1 70.1 69.3 82.5 73.9 70.1 87.1 76.3

Table 5. Accuracy (%) on Office-Home for 1-shot and 3-shot Semi-Supervised Domain Adaptation (ResNet34).



Adapted Labels

e For the backpack case, SLA suggests to

adapt the label from 100% backpack to:

o  30% Backpack
o 5% Toys
o 4% Kettle.

e The adapted labels are much closer to the

ideally-adapted labels (g* (x*)).
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The Intermediate Results in SLA

e PPC is actually a strong model that has

811
performed well on the target domain at the
early stage. 801
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e However, without updating the source labels, =
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it will end up converge to the same < MME + PPC
performance as the original method. 77' —— MME +SLA
—— PPC in MME + SLA
76
) 1000 2000 3000 4000 5000 6000 7000 8000
e On the other hand, in our SLA framework, the number of iterations

model leverages the benefits of PPC,

resulting in better performance.



Conclusion

e General framework

o Source Label Adaptation for Semi-Supervised Domain Adaptation

e Rethinking the usage of source data

o Approach Domain Adaptation as a Noisy Label Learning problem.

e Empirical Improvement

o  Our method improve 2 representative SSDA algorithms on 2 major datasets for both 1-shot

and 3-shot settings.



Visit our project page for more details!
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