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Quick Preview

• Better visual training by leveraging 
masked image modeling and image-text 
contrastive simultaneously

• A novel and effective pre-training 
method termed “Reconstruction in 
Language Space”

• Better transferability/zero-shot 
ability/few-shot ability on a wide range 
of downstream tasks.

Overview of our RILS



Visual Representation Learning

• Masked Image Modeling
• Image-text Contrastive Learning 



Masked Image Modeling (MIM)

• Random Mask → Reconstruct
• Fully self-supervised
• Fine-grained supervision

• Transferability on downstream tasks

[1] Masked Autoencoders Are Scalable Vision Learners

He, Kaiming, et al. [1]



Image-text Contrastive (ITC)

• Image-text pairs → Contrastive
• Image-text alignment
• Zero-shot Understanding
• Robustness

[1] Learning Transferable Visual Models From Natural Language Supervision

Radford, Alec, et al. [1]

[2] Scaling up visual and vision-language representation learning with noisy text supervision

Jia, Chao, et al. [2]



Motivation

MIM 
& 

ITC

Better Visual
Pre-training→ ?

He, Kaiming, et al. [1] Radford, Alec, et al. [2]

[1] Masked Autoencoders Are Scalable Vision Learners
[2] Learning Transferable Visual Models From Natural Language Supervision



Intuition & Observation

• MIM & ITC can benefit each other
• MIM brings local supervision, ITC brings global supervision
• MIM excels at local relation modeling, ITC excels at global semantic alignment

• Naïve combination (MAE+CLIP) shows unsatisfactory mutual benefit
• Reconstruction raw RGB pixels may be inconsistent with ITC
• Two objectives should be more aligned with each other for better performance



Our RILS

◼ Core insight: Reconstruction in language semantic space
◼ Three transformer networks
◼ Two objectives

Share
w

eights
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Image-text Contrastive

◼ Original Images and texts are fed into vision encoder and text encoder
◼ Contrastive learning on encoded image features and encoded text features



Reconstruct in Language Space

◼ Asymmetric encoder-decoder design
◼ Masked image is fed into V-Enc and V-Dec to extract features and reconstruct visual signals



Reconstruct in Language Space
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Masked Decoded Feature

Intact Image Feature

Encoded Sentence Feature （In Batch）

◼ Masked decoded features and original encoded features are mapped to probabilistic 
distribution over in-batch text features (patch-sentence prob)

◼ Minimize the KL divergence between prediction and target

stop-gradient



Training Objective

Image-text Contrastive Loss (InfoNCE)
Reconstruction Loss (KL Divergence)



Pre-training

• Vanilla ViT as vision encoder
• 1-layer ViT block as vision decoder
• 20M image-text pairs sample from Laion-400M
• 25 epochs + 32 gpus



ImageNet Classification

Method PT Dataset PT Epoch Lin. Probe Fine-tuning

MAE 44.3 82.1

CLIP
Laion 20M 25(~400)

67.8 82.7

MAE+CLIP 64.5 82.9

RILS 71.5 83.3

MAE IN-1K 1600 67.8 83.6

RILS Laion 50M 25(~1000) 71.9 83.6

Better performance on linear probe and end-to-end fine-tuning



Detection & Segmentation

Method
COCO LVIS ADE20K

Det Inst Seg Det Inst Seg Sem Seg
MAE 48.1 42.4 31.0 29.6 44.2
CLIP 47.7 42.0 32.3 30.5 45.2

MAE+CLIP 48.1 42.4 32.6 30.7 45.3
RILS 48.5 42.6 33.8 31.6 48.1

80 Categories >1000 Categories 150 Categories

Obviously better results on complex and fine-grained image understanding



Label Efficient Transfer

Method
IN1K (images per class) COCO (sampling ratio)

1 2 10 2% 10% 20%

MAE 3.4 5.2 14.8 6.10 23.16 29.78

CLIP 19.4 29.2 46.3 5.05 22.49 29.88

MAE+CLIP 17.7 27.2 46.4 5.28 23.72 29.53

RILS 24.0 34.6 51.8 6.46 24.69 31.97

Strong out-of-the-box capacity by performing reconstruction in language semantic space



Zero-shot Classification and Retrieval

Method
Z.S. COCO Retrieval

I2T R@1 I2T R@5 T2I R@1 T2I R@5

CLIP 41.82 69.50 30.54 57.10

SLIP 44.54 72.20 33.26 59.66

MAE+CLIP 42.72 70.66 31.40 57.50

RILS 45.06 73.38 34.86 61.36

Better image-text alignment

RILS wins 17 over 21 classification datasets



Robustness on OOD classification

Method IN-A IN-R IN-Sketch IN-V2 ObjectNet Avg.

CLIP 9.3 51.2 28.1 39.8 17.7 32.3

SLIP 10.5 49.8 26.7 41.3 20.4 33.1

MAE+CLIP 11.6 53.9 31.1 41.6 19.4 34.4

RILS 12.1 55.7 31.4 43.3 21.0 35.7

RILS wins on all 5 ImageNet1K out-of-distribution variants



Comparisons with counterparts

All models are trained on exact the same dataset

RILS outperforms its two-stage counterparts Reconstruction space matters



Summary

• An end-to-end visual pre-training method by leveraging MIM + ITC

• To achieve better mutual benefit between MIM and ITC, we propose 
to perform masked reconstruction in language semantic space

• Local- and global- supervision → better performance on fine-/coarse-
grained tasks

• Reconstruct in language space → better vision-language alignment →
Better performance on complex task and zero-shot/low-shot ability.
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Thanks For Your Attention!
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