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Motivation: Large-Scale Unlabeled Videos
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Motivation: The Excellent Power of MAE Pre-training 

• Lack of Applications in Matching-based Downstream 
Tasks:
• Video Object Tracking (VOT)
• Video Object Segmentation (VOS)

Masked autoencoders are scalable vision learners. CVPR 2022, K. He et al.
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Baseline Method

• MAE Pipeline:

• TwinMAE Baseline
• Randonly sample 2-frames in a video.
• Perform random mask on the sampled dual frames.
• Input the masked frames to TwinMAE for reconstruction.
• Trained on Kinetic datasets.
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Visualization
• TwinMAE

• Reconstruction heavily relies on within-frame patches or spatial cues, 
which may lead to sub-optimal temporal representations for matching-
based video tasks.

• Suboptimal temporal correspondence learning.
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Visualization

• The average within-frame and between-frame attention scores obtained by 
TwinMAE and DropMAE in different decoder layers are shown in below.

• The attention score is calculated on 20 randomly sampled K400 validation 
videos, and is averaged on all heads and locations.
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Overall Pipeline
• DropMAE

• Transformer Encoder.
• Transformer Decoder.
• Adaptive Spatial Attention Dropout (ASAD) Module.
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Adaptive Spatial Attention Dropout

• Focus more on temporal cues for reconstruction
• Goal: facilitate the temporal correspondence learning in 

masked video pre-training.

• Temporal matching probability
• Intuitively, a query token that has a strong match in the other frame 

should be a good candidate for ASAD, since in the absence of within 
frame cues, it can still be reconstructed well using the temporal cues 
in the other frame.

• Here, we define a temporal matching function 𝑓!"# " to measure the 
temporal matching probability of the i-th query token:

Where 𝐴 is the attention matrix of one head in a decoder layer, 
Ω! 𝑖 denotes the temporal index set of the i-th query token.
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Adaptive Spatial Attention Dropout
• Overall Dropout Probability Measurement

• The overall spatial-attention dropout probability at location (𝑖, 𝑗) is
measured by using both the temporal matching probability and the 
normalized spatial importance:

where Ω𝑠 𝑖 is the spatial index set that contains all the other token 
indices (i.e., excluding the query index itself) in the same frame as the 
𝑖-th query.

• Sampling for Dropout
• We draw 𝑁% elements from a multinomial distribution based on the 

dropout probability matrix W. 
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Visualization of 𝑓!"#(#)

• Visualization of the temporal matching function on an example frame pair. A large 
value indicates that the 𝑖-th pixel matches well to a pixel in the other frame.
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Downstream Tasks

• Video Object Tracking (VOT)
• Use the state-of-the-art tracker OSTrack as our baseline.
• Replace its pre-trained ViT model as our DropMAE ViT model.
• Fine-tuning on VOT task following the convention. 

Joint feature learning and relation modeling for tracking: A one-stream framework. ECCV 2022, B. Ye et al.

• Video Object Segmentation (VOS)
• Build a ViT-based VOS baseline.
• Fine-tuning on VOS task.

VOS Framework
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Experimental Results

• Comparison with the other pre-training approaches on VOT/VOS.
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Experimental Results

• Comparison with state-of-the-art VOT approaches on four large-scale 
challenging datasets.
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Experimental Results

• Comparison with state-of-the-art VOS approaches.
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Data Sources

• Motion diversity in pre-training videos is more important than scene 
diversity for improving the performance on VOT and VOS.
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Qualitative Results: VOT
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Qualitative Results: VOS
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Qualitative Results: Frame Reconstruction
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THANKS
https://github.com/jimmy-dq/DropMAE.git

This PPT template is borrowed from https://mmcheng.net/cmm/, many thanks!

https://mmcheng.net/cmm/

