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I Proposed Approach

« We associate the intra-class cluster label embeddings with the cluster semantics, and
the expressiveness of their combination is higher than that of a single class label
embedding for capturing multiple underlying modes with diverse visual appearances.

Learnable prompt: “? ? ? ? [class name]”

« We leverage the language-vision pre-
training and represent the clusters with
learnable prompts.

* To guide the generator to capture intra-
class variation factors, the cluster prompts
serve as conditional information and are
jointly learnt in the adversarial training
process.
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I Structure of LCP-GAN

* For class-conditional image generation, we design a cluster
conditional generator by injecting a combination of intra-class
cluster label embeddings, and further incorporate a real-fake
classification head on top of CLIP to distinguish real instances
from the synthesized ones, conditioned on the combination of
the learnable cluster-specific prompts.

* Our framework consists of five components: a generator G, a class-
conditional discriminator D45, a CLIP-based discriminator Dy,ompt,
and a classifier C.
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I Structure of LCP-GAN

* Firstly, we implemented a general semi-supervised class-conditional generative

model with a class-conditional D.;,¢. G synthesizes fake images from the

latent code z together with a random class label Y. Only one single label
embedding is learnt per class, which is insufficient to account for large intra-

class variance.
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I Structure of LCP-GAN

» To better match class-specific data distribution, the generator learns to
synthesize high-fidelity images, conditioned on a combination of intra-class

cluster label embeddings Ziug)e(cy i), and our model can capture multiple
underlying modes with diverse visual appearances.
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I Structure of LCP-GAN

 Considering that natural language can express a wide range of visual

concepts, we build a CLIP-based discriminator Dy,omp,: to learn the

cluster-specific context vectors and guide generator G to capture cluster
semantics.

Generator G Discriminator Dy,
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 For labeled images, we perform intra-class data partitioning via soft k-
means clustering in the feature space of a ResNet pre-trained on ImageNet.

I Cluster-conditional Generation

* The images of each class Y are divided into k¢ clusters, and the

corresponding prototypes py = {py 1, s Py _ky } ATE computed by the
weighted mean vectors of the embedded images as follows:

pyi — (1= wpy  + pud f(x)

* In the above equation, the degree ufci) to which x belongs to intra-class
cluster i is computed as follows:

L &Xpeos(py i, 1 ()/0))
¥ Xjexp(cos(py j, f(x))/6)
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I Cluster-conditional Generation

* For image generation, we simulate the condition by randomly sampling a

.. k .
coefficient vector u, = [ugl), ué y)] to combine the cluster label

embeddings, based on which the generator synthesizes an image
conditioned as follows:

X, = G(Z,Ziug)e(cy_i)).
* Where ¢(+) denotes the learnable embedding layer.

By using combination we are able to capture multiple underlying modes
with diverse visual appearances.
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I Learning Cluster-specific Prompts

* Inspired by CoOp [1], we model the cluster-specific context words with
learnable vectors, and the context words are in the form of continuous
vectors that have the same dimension as the word embeddings.
Specifically, we adopt the prompt form as follows:

ty i = vél_)ky] vz(f}(y] [vrgf{;] |class_name].

R
» where the context vectors {vg_)} are learnable, and the word embedding
l r=

vector of the i-th class name is used in the token position [class_name].
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I Learning Cluster-specific Prompts

« We perform the prompt-conditional adversarial training, and the

corresponding discriminator Dy, my¢ IS built by incorporating a real-fake
classification head on top of the CLIP encoders. The conditional

identification weight is defined as follows:
Wy = z ua(ci)htxt (Etxt(ty i)
* The prediction probability is ci:omputed as follows:
Dprompt (%, by, Uy ) = Wes + Ry (Eimg (X)) + Wunc * Rimg (Eimg (X))

« where w,,,. denotes the unconditional identification weight.

* By incorporating the D,.omp: . We are able to pull the representations of
cluster-specific images closer to the corresponding prompt.



I Class-Conditional Image Synthesis
* Synthesis results of LCP-GAN and the base models
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I Linear interpolation

* Interpolation results of LCP-GAN by linearly combining the paired cluster
label embeddings.
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I Learnt prompts

 The class-specific nearest words and synthesized images.

1. Blond Hair 1. Male

2. Pale Skin 2. Wearing Hat
3. Smiling 3. Eyeglasses
4. Brown Hair 4. Big Nose

5. Heavy Makeup 5. Mustache

1. Blue Crown 1. Gray Wing
2. Green Wings 2. Yellow Bill
3. Orange Chest 3. Black Tail

4. Red Breast 4. Long Leg

5. Black Eyes S. White Throat
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I Semantically meaningful clusters
* The cluster-specific images syntheS|zed by LCP-GAN.
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I Conclusion

* We extend a semi-supervised GAN framework to learn from
intra-class clusters, and enable class-specific image synthesis
to be conditioned on the combination of cluster label
embeddings.

* We leverage the language vision pre-training and jointly learn
cluster-specific prompts through prompt-conditional
adversarial training.

 Our design is able to discover a wide range of semantically
meaningful intra-class variation factors and achieve superior
performance on multiple semi-supervised image synthesis tasks.
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Thank you
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