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GeoNet Overview

1. GeoNet Dataset

205 #classes 600
400,000 #images 300,000

Scene Object
Recognition Classification

== i =i

Shopfront Headlight

Geographical Image Distribution in GeoNet

USA

We study the significant accuracy drop observed on

3. GeoNet Benchmarking
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2. GeoNet Analysis
P(z,y) = P(bs|y) - P(fz|y) - P(y)
; | | ‘_I

Context Shift
P\‘ (br‘l/> # P)‘ (bl‘ll)

Rel. Accuracy Gain
[
o

Large-Scale Pretraining

Design Shift
P,(fzly) # P:(fzly)

Label Shift
Ps(y) # Pi(y)

Target Supervised SWAV-IN 1k SWAG-IG 3.7B
Background of scenes shift  Design of objects change Class-distribution shift S |[=m Macouwx e e fLPLEon 40w
across domains across domains across geographies <60
18]

Label Distribution in GeoNet 550
. 40

- B GeoPlaces-USA 30 Fﬂ

B GeoPlaces-Asia

RN-50 (24.0M) ViT-S (21.8M) ViT-B (85.9M)
Backbone (#params)

ViT-L (303.3M)

% of Images/Class

Unsupervised adaptation and large-scale pre-training do not
suffice for bridging geographical disparity between domains.




Robustness in Computer Vision

* Models trained on one domain perform poorly on new domains encountered at

test-time.
e Dataset-bias prevents generalization.

Training Domain

Acc =90%

cartoons

Testing Domain

Acc = 60%

real world

Prior Works

e Style

* Capture Variations
* Photo-realism
Lighting/Brightness
* Pose/Shape



Geographical Bias in Datasets
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* Models trained on these biased datasets generalize poorly to new geographies.
* Where the model is nevertheless deployed.

* Has deep implications on fairness and inclusivity.
* Model deployed on low-resource demography showcases poor performance.
e Unfair towards targeted sub-populations.



GeoNet Contributions

1. Large-scale Dataset
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2. Characterizing Domain Shifts




GeoNet Dataset

* GeoNet has data for scene classification and object classification.

Geolmnet
Object Classification

GeoPlaces
Scene Recognition

Hclasses 600

400,000 #images 300,000




GeoNet Dataset

Dataset publicly available, scan the
following QR Code!

SCAN ME



Characterizing Distribution Shifts

* With some reasonable assumptions, we can split the joint image-label probability
into context, design and label shifts.

* by: Background. * fx: Foreground * P(y): label distribution
P(z,y) = P(bzly)-P(fz|y)- P(y)
RIS W~
context design prior

P,(b,|y) # Pi(by|y) Background of scenes shift

across domains



Characterizing Distribution Shifts

* With some reasonable assumptions, we can split the joint image-label probability
into context, design and label shifts.

* by: Background. * fx: Foreground * P(y): label distribution
P(z,y) = P(bzly)-P(fz|y)- P(y)
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Characterizing Distribution Shifts

* With some reasonable assumptions, we can split the joint image-label probability
into context, design and label shifts.

* by: Background. * fx: Foreground * P(y): label distribution
P(z,y) = P(bzly)-P(fz|y)- P(y)
RIS W~
context design prior

Class-distribution shift (.
across geographies s(y) # P(y)



Cross-Domain Performance Gaps



Cross-Domain Performance Gaps
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Benchmarking Unsupervised Adaptation on GeoNet

 UDA methods generally designed for covariate shifts.
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Benchmarking Unsupervised Adaptation on GeoNet

 UDA methods generally designed for covariate shifts, but they do not
address geographical shifts.
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Large-Scale Pre-training Does Not Suffice for GeoDA
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Large-Scale Pre-training Does Not Suffice for GeoDA

* Large-scale pre-training using large data does not suffice to bridge
geographical disparities.
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e GeoNet
across g

is a large-scale benchmark useful to study unsupervised adaptation
cographies.

* Existing domain adaptation methods are necessary, but not sufficient to
bridge the novel shifts due to geography.

* Novel algorithmic solutions are needed to address the issues and deploy

geographically robust models.
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