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Quick Preview:
Referring Image Segmentation (RIS)

Input image Output mask

Input text
“a cat is lying on the seat of the scooter”



Quick Preview:

Problems
Labelling RIS dataset is costly
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Quick Preview:

New task of Zero-shot RIS
Zero-shot RIS without any additional training
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Quick Preview:

Motivation
Global-Local Context in RIS
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Quick Preview:
Overall Framework
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Quick Preview:

Experiments
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Referring Image Segmentation

Input image

Input text
“a cat is lying on the seat of the scooter”



Referring Image Segmentation

Input image Output mask

Input text
“a cat is lying on the seat of the scooter”



Referring Image Segmentation

Input image

Input text
“the bottom cat”



Referring Image Segmentation

Input image Output mask

Input text
“the bottom cat”



Referring Image Segmentation

Input image

Input text
“a scooter with two cats sitting on”



Referring Image Segmentation

Input image Output mask

Input text
“a scooter with two cats sitting on”



Challenges

1. High-level understanding of language

“a cat is lying on the seat of the scooter”
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3. Dense instance-level prediction




Challenges

1. High-level understanding of language 2. Comprehensive understanding of an image

“a cat is lying on the seat of the scooter”

4. Select only one instance

3. Dense instance-level prediction :
from several objects of the same class
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Fully supervised RIS
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Problems

Fully supervised RIS
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The new task of Zero-Shot RIS

Zero-shot RIS without any additional training
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The new task of Zero-Shot RIS

Zero-shot RIS without any additional training
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Motivation

Global-Local Context in RIS

Local-context Global-context Global-Local context
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* Global-Local context: consider jointly Local- and Global- context
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Motivation

Local-context

a cat is lying on
the seat of the scooter
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* Local-context: focus on the target class to be selected



Motivation

Global-context

a catis lying on
the seat of the scooter
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* Global-context: consider the relations between objects



Motivation

Global-Local context
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 Extract Global-Local context features on both visual and textual modalities



Contributions

1. New task of Zero-shot RIS based on CLIP without any additional training
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Contributions

1. New task of Zero-shot RIS based on CLIP without any additional training

2. Visual and textual encoders
to integrate Global- and Local- context features of images and sentences, respectively
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Contributions

1. New task of Zero-shot RIS based on CLIP without any additional training

2. Visual and textual encoders
to integrate Global- and Local- context features of images and sentences, respectively

3. Global-Local context features
to capture the target semantics as well as the relations between objects

Global-Local context
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Overall Framework
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Overall Framework
1. Global-Local visual encoder
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Overall Framework

2. Global-Local textual encoder
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Overall Framework

How our Global-Local CLIP works
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Overall Framework

Mask proposals from the off-the-shelf instance segmentation model
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Global-context Visual Features
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Global-context Visual Features
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Global-context Visual Features
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Local-context Visual Features
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Local-context Visual Features
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Global-Local Context Visual Features
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Global-context Textual Features
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Global-context Textual Features
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Local-context Textual Features
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Global-Local context Textual Features
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Overall Framework

¥ Global-Local
Global-Local : textual feature
visual features 1
[ ---- |03
—* .
- - 08—

Similarity

Output Mask

Mask Prediction




Experiments
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Experiments
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LAVT: Language-aware vision transformer for referring image segmentation. In CVPR, 2022
CRIS: Clip-driven referring image segmentation. In CVPR, 2022
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LAVT: Language-aware vision transformer for referring image segmentation. In CVPR, 2022

CRIS: Clip-driven referring image segmentation. In CVPR, 2022



Qualitative Results

Different context-levels of visual feature

Expression:
a green bicycle ridden by a man
in a black windbreaker
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Qualitative Results

Different context-levels of visual feature

Expression:
a green bicycle ridden by a man
in a black windbreaker

_Global visual Global-Local




Qualitative Results

Different context-levels of textual feature

Expression: a guy in wheelchair



Qualitative Results with baselines

Expression: a brown leather sofa with a brown, red, and white blanket laying on the back of it

* Mask generator: FreeSOLO in all baselines

FreeSOLO: Learning to segment without annotations. In CVPR ,2022.
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