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Motivation

• Extract Global-Local context features on both visual and textual modalities
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Contributions
1. New task of Zero-shot RIS based on CLIP without any additional training

2. Visual and textual encoders 
to integrate Global- and Local- context features of images and sentences, respectively

3. Global-Local context features 
to capture the target semantics as well as the relations between objects
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Overall Framework

How our Global-Local CLIP works



Overall Framework

Mask proposals from the off-the-shelf instance segmentation model
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Overall Framework

Mask Prediction
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Experiments

LAVT: Language-aware vision transformer for referring image segmentation. In CVPR, 2022
CRIS: Clip-driven referring image segmentation. In CVPR, 2022

RefCOCOg val set Different context-level featuresZero-shot Evaluation on PhraseCut
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Qualitative Results
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Qualitative Results

Different context-levels of textual feature



Qualitative Results with baselines

• Mask generator: FreeSOLO in all baselines

FreeSOLO: Learning to segment without annotations. In CVPR ,2022.
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