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Quick Preview

B Task

* We focus on the few-shot image recognition task, where only one or a few support
images are available for a new class, and a large base dataset is used for meta-training.
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Quick Preview

B Method
 We propose to use text data as semantic prompts to improve the visual feature
extraction.
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Quick Preview

B Experiments

* We evluate three different text encoders, and achieve consistent improvements on

four datasets.

minilmageNet 5-way

tieredlmageNet 5-way

Method Backbone Params/FLOPS | -shot 5-shot 1-shot S-shot
LEO 1] WRN-28-10  36.5M/3.7 x 10" 61.76+0.08 77.59+0.12 66.33+0.05 81.444+0.09
CC+rot [14] WRN-28-10  36.5M/3.7 x 10'""  62.93+0.45 79.87+0.33 70.53+0.51 84.98+0.36
Align [!] WRN-28-10  36.5M/3.7 x 10" 65.924+0.60 82.85+0.55 74.40+0.68 86.61+0.59
MetaOptNet [ 2] ResNet-12  12.5M/3.5 x 10" 62.64+0.61 78.63+0.46 65.99+0.72 81.56+0.53
Meta-Baseline [(] ResNet-12  12.5M/3.5 x 10" 63.174+0.23  79.26+0.17 68.62+0.27 83.74+0.18
DeepEMD [6] ResNet-12  12.5M/3.5 x 10" 65.91+0.82 82.41+0.56 71.16+0.87 86.03+0.58
RE-Net [17] ResNet-12  12.5M/3.5 x 107 67.60+0.44 82.58+0.30 71.61+0.51 85.28+0.35
TPMM [ 1] ResNet-12  12.5M/3.5 x 10" 67.64+0.63 83.44+043 72.24+0.70 86.55+0.63
SetFeat [ ] ResNet-12  12.5M/3.5 x 107 68.32+0.62 82.71+0.46 73.63+0.88 87.59+0.57
SUN[10] Visformer-S  12.4M/1.7 x 10°  67.80+0.45 83.25+0.30 72.99+0.50 86.74+0.33
KTN [32] ResNet-12  12.5M/3.5 x 107 61.424+0.72  74.16+0.56 - -
AM3 [7] ResNet-12  12.5M/3.5 x 107 65.304+0.49  78.104£0.36  69.08+0.47 82.58+0.31
TRAML [ 1] ResNet-12  12.5M/3.5 x 10  67.10+0.52  79.54+0.60 - .
DeepEMD-BERT [77]  ResNet-12  12.5M/3.5 x 10" 67.03+0.79 83.68+0.65 73.76+0.72 87.51+0.75
Pre-train (Ours) Visformer-T ~ 10.0M/1.3 x 107  65.16+0.44 81.22+0.32 72.3840.50 86.74+0.34

~SP-CLIP (Ours) Vistformer-T _ 10.0M/1.3 x 100 72.31+£0.40 83.42+0.30 78.0310.46 88.55+0.32 |
SP-SBERT (Ours) Visformer-T ~ 10.0M/1.3 x 10°  70.70+£0.42 83.55+0.30 73.314+0.50 88.56+0.32
SP-GloVe (Ours) Visformer-T  10.0M/1.3 x 10°  70.81+0.42 83.31+0.30 74.68+0.50 88.64+0.31

Table 1. Comparison with previous work on minilmageNet and fieredImageNet. Methods in the top rows do not use semantic information,
and methods in the middle rows leverage semantic information from class names [ 24, 12, 5] or descriptions [ ]. Accuracies are reported
with 95% confidence intervals.



Motivation

* Given only one support image, the obtained image feature may contain much nioses.
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Motivation

* Given only one support image, the obtained image feature may contain much nioses.
* The class name has rich semantic information that can be extracted by a text encoder.
* We use semantic features as prompts to improve the visual feature extraction.
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The framework of semantic prompt

* Feed image patches into a Vision Transformer.

0 0 0

bedding & Transformer Layers




The framework of semantic prompt

* Feed image patches into a Vision Transformer.
* Feed the class name into a text encoder to obtain a semantic prompt.
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The framework of semantic prompt

* Feed image patches into a Vision Transformer.
* Feed the class name into a text encoder to obtain a semantic prompt.
* Extract image features guided by the semantic prompt via spatial and channel interaction.
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The framework of semantic prompt

* Feed image patches into a Vision Transformer.
* Feed the class name into a text encoder to obtain a semantic prompt.

* Extract image features guided by the semantic prompt via spatial and channel interaction.
* Train the model via meta-learning.
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Spatial and channel interaction

* Adapt visual features on spatial and channel dimensions according to the given prompt.
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* minilmageNet & tieredlmageNet

Experimental results

minilmageNet 5-way

tieredImageNet 5-way

Method Backbone Params/FLOPS | -shot 5-shot | -shot 5-shot
LEO 1] WRN-28-10  36.5M/3.7 x 10*  61.76+0.08 77.59+0.12 66.33+0.05 81.44+0.09
CC+rot [11] WRN-28-10 36.5M/3.7 x 10" 62.93+0.45 79.87+0.33 70.53+0.51 84.98+0.36
Align [ 1] WRN-28-10  36.5M/3.7 x 10" 65.92+0.60 82.85+0.55 74.40+0.68 86.61+0.59
MetaOptNet [ 7] ResNet-12  12.5M/3.5 x 107  62.64+0.61 78.63+046 65.99+0.72 81.56+0.53
Meta-Baseline [] ResNet-12 12.5M/3.5 x 10 63.17+:0.23 79.26+0.17 68.62+0.27 83.74+0.18
DeepEMD [ 6] ResNet-12  12.5M/3.5 x 10Y  65.91+0.82 8241+0.56 71.16+:0.87 86.03+0.58
RE-Net [17] ResNet-12  12.5M/3.5 x 10°  67.60+0.44 82.58+0.30 71.61+0.51 85.28+0.35
TPMM [ 1] ResNet-12  12.5M/3.5 x 10Y  67.64+0.63 83.44+0.43 72.24+0.70 86.55+0.63
SetFeat [ ] ResNet-12  12.5M/3.5 x 107 68.32+0.62 82.71+0.46 73.63+0.88 87.59+0.57
SUN [10] Visformer-S  12.4M/1.7 x 10°  67.80+0.45 83.25+0.30 72.99+0.50 86.74+0.33
KTN [37] ResNet-12  12.5M/3.5 x 10°  61.42+0.72 74.16+0.56 . -
AM3 [57] ResNet-12  12.5M/3.5 x 10Y  65.304+£0.49 78.10+£0.36 69.08+0.47 82.58+0.31
TRAML [21] ResNet-12  12.5M/3.5 x 10°  67.10+0.52  79.54+0.60 . -
DeepEMD-BERT [77]  ResNet-12  12.5M/3.5 x 107  67.03+0.79 83.68+0.65 73.76+0.72 87.51+0.75
Pre-train (Ours) Visformer-T  10.0M/1.3 x 10  65.16+0.44 81.22+0.32 72.384+0.50 86.74+0.34

IP (Ours)
SP-SBERT (Ours)

SP-GloVe (Ours)

Vistormer-T
Visformer-T
Visformer-T

10.0M/1.3 x 10"
10.0M/1.3 x 107
10.0M/1.3 x 10°

72.31:0.40
70.70+0.42
70.8140.42

83.42+0.30
83.55+0.30
83.31+0.30

78.03+0.
73.31+0.50
74.68+0.50

88.55+0.32
88.56+0.32
88.64+0.31

Table |. Comparison with previous work on minilmageNet and fieredImageNet. Methods in the top rows do not use semantic information,

and methods in the middle rows leverage semantic information from class names [, 12, 5] or descriptions [ ]. Accuracies are reported
with 95% confidence intervals.



Experimental results

* CIFAR-FS & FC100

CIFAR-FS 5-way FC100 5-way
Method Backbone Params/FLOPs 1-shot 5-shot 1-shot 5-shot
PN+rot [ 1] WRN-28-10  36.5M/3.7 x 10'Y  69.55+0.34 82.34+0.24 . .
Align [1] WRN-28-10  36.5M/3.7 x 10*° . . 45.83+0.48 59.74+0.56
ProtoNet [15] ResNet-12  12.5M/3.5 x 10? 72.240.7 83.5+0.5 37.5+0.6 52.540.6
MetaOptNet [ 2] ResNet-12  12.5M/3.5 x 107 72.6+0.7 84.3+0.5 41.14+0.6 55.54+0.6
MABAS [ 1] ResNet-12  12.5M/3.5 x 10°  73.51+0.92 85.49+0.68 42.314+0.75 57.56+0.78
Distill [17] ResNet-12  12.5M/3.5 x 10” 73.940.8 86.9+0.5 44.6+0.7 60.9+0.6
RE-Net [17] ResNet-12  12.5M/3.5 x 10°  74.51+:046 86.60+0.32 . -
infoPatch [27] ResNet-12  12.5M/3.5 x 10° - - 43.840.4 58.0+0.4
SUN [10] Visformer-S  12.4M/1.7 x 10%  78.37+0.46 88.84+0.32 . S
Pre-train (Ours) Visformer-T  10.0M/1.3 x 10° 71.99+0.47 85.984+0.34 43.77+0.39 59.48+0.39
SP-CLIP (Ours) Visformer-T  10.0M/1.3 x 10”7  82.18+0.40 8824+0.32 48.53+0.38 61.55+0.41
SP-SBERT (Ours) Visformer-T  10.0M/1.3 x 10  81.32+040 88.31:+0.32 47.03+0.40 61.03+0.40
SP-GloVe (Ours)  Visformer-T  10.0M/1.3 x 10°  81.62+041 88.324+0.32 46.69+0.41 61.184+0.41

Table 2. Comparison with previous work on CIFAR-FS [7"] and FCI00 [~ 1].




Experimental results

Aug SI CI Mini Tiered CIFAR-FS FC100

x x x 6196 7191 68.84 40.78

VY x x 6515 7238 71.99 43.77
159% v v x 7159 7620 81.19 47.83
154% v x v 7048 77.62 79.80 47.10
teow v v v 7231 78.03 82.18 48.53

Table 3. Ablation study on four datasets under the 1-shot setting.
SI means spatial interaction, and CI means channel interaction.
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Figure 4. Visualization of attention maps when prompting with different class labels.



Experimental results

minilmageNet CIFAR-FS
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Figure 3. Accuracy vs. different layers to inset prompts. We report 5-way 1-shot accuracy (%) on the
validation set of minilmageNet and CIFAF-FS along the meta-training process. The feature extractor
has three stages and multiple Transformer layers in each stage.



Experimental results

Base classes Novel classes

Figure 5. t-SNE results of feature distributions.



Summary

* We investigate how to use text data to improve the visual feature extraction for few-
shot learning.

* We propose a new semantic prompt approach, where text features are used as prompts
to adaptively tune the visual features.

* We propose two interaction mechanism, which allow the semantic prompt and visual
features to interact along the spatial and the channel dimensions.

* Our approach is evaluated on four datasets with three different text encoders.
Experimental results show that using semantic prompt can obtain much more
performance gain than previous methods.



