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Quick Preview

◼ Task
• We focus on the few-shot image recognition task, where only one or a few support 

images are available for a new class, and a large base dataset is used for meta-training.



Quick Preview

◼ Method
• We propose to use text data as semantic prompts to improve the visual feature 

extraction.
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Quick Preview

◼ Experiments
• We evluate three different text encoders, and achieve consistent improvements on 

four datasets.



Motivation
• Given only one support image, the obtained image feature may contain much nioses.
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Motivation
• Given only one support image, the obtained image feature may contain much nioses.
• The class name has rich semantic information that can be extracted by a text encoder.
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Motivation
• Given only one support image, the obtained image feature may contain much nioses.
• The class name has rich semantic information that can be extracted by a text encoder.
• We use semantic features as prompts to improve the visual feature extraction.

A unicycle is a vehicle with only 
one wheel...

𝑔{‘unicycle’}

Input image

𝑓

Semantic prompt-guided 
feature extraction

Attention map

wall

person

unicycle

helmet



The framework of semantic prompt
• Feed image patches into a Vision Transformer.
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The framework of semantic prompt
• Feed image patches into a Vision Transformer.
• Feed the class name into a text encoder to obtain a semantic prompt.
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The framework of semantic prompt
• Feed image patches into a Vision Transformer.
• Feed the class name into a text encoder to obtain a semantic prompt.
• Extract image features guided by the semantic prompt via spatial and channel interaction.
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The framework of semantic prompt
• Feed image patches into a Vision Transformer.
• Feed the class name into a text encoder to obtain a semantic prompt.
• Extract image features guided by the semantic prompt via spatial and channel interaction.
• Train the model via meta-learning.
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1.class prototype:

𝑐𝑖 =
1

𝐾
σ𝑗=1
𝐾 𝑓𝑔(𝑥𝑗

𝑠)

2.loss function:

𝐿𝑚𝑒𝑡𝑎 =

−𝔼𝑆,𝑄𝔼𝑥𝑞 log
exp(𝑠(𝑓 𝑥𝑞 ,𝑐𝑦𝑞)/𝜏)

σ𝑖=1
𝑁 exp(𝑠(𝑓 𝑥𝑞 ,𝑐𝑖)/𝜏)



Spatial and channel interaction
• Adapt visual features on spatial and channel dimensions according to the given prompt.
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• Spatial Interaction

① Concat the prompt and patches.
෡𝒁𝑙−1 = [𝒛0, 𝒛𝑙−1

1 , … , 𝒛𝑙−1
𝑀 ]

② Interact with multi-head attention.
𝒒, 𝒌, 𝒗 = ෡𝒁𝑙−1𝑾𝑞𝑘𝑣

𝑨 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒒𝒌𝑇/𝐶ℎ
1/4

)

𝑀𝑆𝐴 ෡𝒁𝑙−1 = 𝑨𝑣 𝑾𝑜𝑢𝑡

• Channel Interaction

① Average patch features: 𝒛𝑙−1
𝑐 =

1

𝑀
σ𝑖=1
𝑀 𝒛𝑙−1

𝑖

② Feed the prompt and visual context into MLP.
𝜷𝑙−1 = 𝑀𝐿𝑃([𝒛0; 𝒛𝑙−1

𝑐 ])

③ Add the bias vector to all patch features.
෡𝒁𝑙−1 = 𝒛𝑙−1

𝑖 + 𝜷𝑙−1, 𝑖 = 1,2, … ,𝑀



Experimental results
• miniImageNet & tieredImageNet



Experimental results
• CIFAR-FS & FC100



Experimental results

Figure 4. Visualization of attention maps when prompting with different class labels.
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Experimental results

Figure 3. Accuracy vs. different layers to inset prompts. We report 5-way 1-shot accuracy (%) on the

validation set of miniImageNet and CIFAF-FS along the meta-training process. The feature extractor

has three stages and multiple Transformer layers in each stage.



Experimental results

Figure 5. t-SNE results of feature distributions.



Summary

• We investigate how to use text data to improve the visual feature extraction for few-
shot learning.

• We propose a new semantic prompt approach, where text features are used as prompts 
to adaptively tune the visual features.

• We propose two interaction mechanism, which allow the semantic prompt and visual 
features to interact along the spatial and the channel dimensions.

• Our approach is evaluated on four datasets with three different text encoders. 
Experimental results show that using semantic prompt can obtain much more 
performance gain than previous methods.


