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Detailed Introduction
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  ●  Paradigm Review

➫ICCV-19[1]

➫ECCV-22[2]

  ●  Previous Methods

. . .

[1] Mao et al., Learning Trajectory Dependencies for Human Motion Prediction. ICCV-2019.
[2] Li et al., Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction. ECCV-2022.

DCT：Discrete Cosine Transform  

IDCT: Inverse DCT



  » robust to body shape perturbation
  » robust to coordinate system shift
     ... 

● Scheme: ● Advantage:
Frequency space encourages human 
motion presidction systems to focus on  
trajectory-related cues (e.g. temporal 
smoothness).
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●  Diverse frequency distributions bring challenges to robust human 
motion prediction 

➭intra-sample difference ➭inter-sample difference

Different body joints exhibit different 
frequency appearances

Different personal motion styles in the same 
activity brings subtle intra-class bias to different 
data samples

 ● Multi-view augmentation learning can be developed into a promising 
solution for robust human motion prediction.



Two Closer Looks
 ◎ Decompose More
 ◎ Aggregate Better

Two Key Components 
◎ Frequency Decomposition Unit
◎ Feature Aggregation Unit 

»»»
Toward Effective Frequency Representation Learning 

 Paradigm Review
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[1] Maosen Li, et al. Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In CVPR, 2020.
[2] Lingwei Dang, et al. MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In ICCV, 2021.
[3] Tiezheng Ma, et al. Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In CVPR, 2022.
[4] Maosen Li, et al. Skeleton-parted graph scattering networks for 3d human motion prediction. In ECCV, 2022.
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Short-term Prediction on Human3.6M Dataset  
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Decomposition -Aggregation Scheme

Contributions:

· We propose a frequency decomposition unit (FDU) that develops multiple versatile filters to embed 
each body joint trajectory into multiple frequency spaces, enriching its encodings in the spectral 
domain.

· We design a feature aggregation unit (FAU) that deploys a series of intra-space and inter-space 
feature aggregation layers to extract comprehensive representations from multiple frequency spaces, 
collecting richer multi-view body features for robust motion prediction.
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Thanks  For Watching! 

Our Team: 

Shaoyi Du Yang Wu Yang YangXuehao Gao


