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Tasks

➢Input:    Observed RGB video under egocentric view

➢Output: 1) Per-frame 3D hand joints position in the camera space; 

2) Performed action category.

Video from FPHA dataset[1]

Hand pose for the frames: 

GT / Est.

Action for the sequence:  

Pour milk (GT) /  Pour milk (Est.)
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➢ A hierarchical temporal transformer with two cascaded blocks

Overview
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Overview

➢ A hierarchical temporal transformer with two cascaded blocks,  to:

1. leverage different time spans for pose and action estimation.

2. model their semantic correlation by deriving the high-level action from the 

low-level hand motion and manipulated object label.
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Motivation

Close Juice Bottle Open Juice Bottle

Pour Liquid Soap Tear Paper

Observations

➢Severe ambiguity of action types judged 

from individual frames

➢Frequent occlusion and truncations for per-

frame hand pose.

Our Key Designs

✓Leverage the temporal information for 

both pose and action
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Motivation
Observations

➢Severe ambiguity of action types judged 

from individual frames

➢Frequent occlusion and truncations for per-

frame hand pose.

➢Different temporal granularity and semantic 

correlation between hand-action.

Our Key Designs

✓Leverage the temporal information for 

both pose and action

✓Build a hierarchical temporal 

transformer with two cascaded blocks, 

to cope with the different temporal 

granularity and semantic correlation 

between hand-action.

Hand Pose

Time Span: Per-Frame

Action

Time Span: Seconds

(+ Manipulated Object Label)
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Framework

Hand Pose Estimation with Short-Term 

Temporal Cue

➢ Pose block 𝑷 focuses on a narrower temporal

receptive field to output per-frame 3D hand pose

and manipulated object label.

𝐿𝐻 𝐼 = 𝐻𝐼
2.5𝐷 − 𝐻𝐼,𝑔𝑡

2.5𝐷

1
. 𝐻2.5𝐷 is 2D+Depth for hand joints

𝐿𝑂 𝐼 = 𝐶𝐸(𝑤𝐼
𝑜, Pr 𝑂 𝐼 ). 𝑤𝐼

𝑜 is a one-hot vector for the target distribution.
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Framework

Hand Pose Estimation with Short-Term 

Temporal Cue

➢ Pose block 𝑷 focuses on a narrower temporal

receptive field to output per-frame 3D hand pose

and manipulated object label.

➢ Input video is divided into consecutive segments

by a shifting window strategy with window size 𝑡,
segments are processed by 𝑷 in parallel.

𝐿𝐻 𝐼 = 𝐻𝐼
2.5𝐷 − 𝐻𝐼,𝑔𝑡

2.5𝐷

1
. 𝐻2.5𝐷 is 2D+Depth for hand joints

𝐿𝑂 𝐼 = 𝐶𝐸(𝑤𝐼
𝑜, Pr 𝑂 𝐼 ). 𝑤𝐼

𝑜 is a one-hot vector for the target distribution.
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Framework

Action Recognition with Long-Term 

Temporal Cue

➢ Action block 𝑨 uses the full video to predict the

action label.

➢ The input of 𝑨 leverages the per-frame predicted

hand pose, object label and image feature.

𝐿𝐴 𝑆 = 𝐶𝐸 𝑤𝑆, Pr 𝐴 𝐼 . 𝑤𝑆 is a one-hot vector for the target distribution.
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Framework

Segmentation Strategy to Divide Long 

Videos into HTT Inputs

Videos longer than 𝑇 frames are divided into 

consecutive clips by adopting the shifting window 

strategy with a window size 𝑇:

➢ In testing stage, the hand pose are estimated by 𝑷, 

the action category is voted from the predictions 

among segmented clips.
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Framework

Segmentation Strategy to Divide Long 

Videos into HTT Inputs

Videos longer than 𝑇 frames are divided into 

consecutive clips by adopting the shifting window 

strategy with a window size 𝑇:

➢ In testing stage, the hand pose are estimated by 𝑷, 

the action category is voted from the predictions 

among segmented clips.

➢ In training stage, for data augmentation, the 

starting frame for shifting window is offset to 

each of the first 𝑡 frames.
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Results (FPHA[1])

Hand pose: GT / Est.

Action (GT / Est. ) : 
Scratch Sponge / Scratch Sponge

Action (GT / Est. ):
Close Peanut Butter / Close Peanut Butter
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Joule-color [2] Two-Stream [3] H+O [4] Collaborative [5] Ours

Process both hand-action √ √ √

Acc. 66.78 75.30 82.43 85.22 94.09

Results (FPHA[1])
Action Recognition

Input
Process both 

hand-action

H+O [4] Image √

Collaborative [5] Video √

ACE-Net[6] Video

Ours Video √

Camera Space Root-Aligned Space

3D Hand Pose Estimation

14



Hand pose: GT / Est. 

Action (GT / Est.) : 
Put in Cocoa / Put in Cocoa

Action (GT / Est.) : 
Close Chips / Close Chips

Results (H2O[7])
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Results (H2O[7])
Process both hand-action Acc.

C2D [8] 70.66

I3D [9] 75.21

SlowFast [10] 77.69

H+O [4] √ 68.88

H2O w/ ST-GCN [7] √ 73.86

H2O w/ TA-GCN [7] √ 79.25

Ours √ 86.36

Action Recognition

LPC [11] H+O [4] H2O [7] Ours

Input Image Image Image Video

Process both hand-action √ √ √

MEPE (in mm)

Camera Space

Left 39.56 41.42 41.45 35.02

Right 41.87 38.86 37.21 35.63

3D Hand Pose Estimation
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➢Compared with t=1, we show enhanced robustness under occlusion and truncation.

➢Compared with t=128, we avoid over-attending to distant frames, therefore ensuring sharp local motion.

Video from H2O dataset [7]

Est. vs GT

2D Projection

In Camera Space

Attention weights for

current frame → individual frames 

is highlighted

Ablation and Visualization

➢Hand Pose Estimation with Short-Term Temporal Cue.
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Ablation and Visualization

➢Action Recognition with Long-Term Temporal Cue

The arrow indicates the attention to the current frame

➢The last few frames are the key for 
recognizing the action of take out espresso.

➢In response our network pays most attention to 
these frames.

Video from H2O dataset [7]
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➢Task
• 3D hand pose estimation and action recognition from egocentric RGB videos

➢Key ideas
• Leverage the temporal information for both pose and action.

• Build a hierarchical temporal transformer with two cascaded blocks, to cope with 
the different temporal granularity and semantic correlation between hand-action.

➢Results
• State-of-the-art results on FPHA and H2O datasets.

Concluding Remarks
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