
Conditional Graphic Layout Generation via
Constraint Serialization and
Decoding Space Restriction

Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu,
Vuksan Mijovic, Zijiang James Yang, Jian-Guang Lou, Dongmei Zhang

THU-AM-184

LayoutFormer++:

Highlights

Sufficient
Flexibility

Conditional
Layout

Generation

Good
Controllability

Constraint
Serialization

Decoding
Space

Restriction

LayoutFormer++

Two Requirements

Our Method

Graphic Layout

01
What is the conditional
graphic layout generation?

Conditional Graphic Layout Generation

Take various user constraints as input and generate layouts as output:

Input 1:

Input 2:

Input 3:

image, input, input,
text, text, text button

or

or

image at the top of the canvas,
input 1 has equal size of input 2,

…

Various User Constraints Graphic Layout Graphic Design

Two Critical Requirements

Good
Controllability

Text ToolbarImage model A

smaller than
Icon at the top of Text
Icon Text

model B

Bad
Quality

Violate
Constraints

Layout
Former++

Previous Approaches:

Sufficient Flexibility

LayoutFormer++:

Constraints A:

Constraints B:

<sos> image|text|text <eos>

<sos> icon|text||icon top
text|icon smaller text <eos>

Sufficient Flexibility

The model should be able
to handle diverse user
constraints.

Good Controllability

The model should generate
layouts conforming to user
constraints as many as
possible without harming
quality.

But existing work… But existing work…
simply focus on tackling a single
task without considering
whether they can be applied to
other tasks.

have no satisfactory methods to
ensure good controllability.

02
How do we achieve
these two requirements?

Model Overview

We propose a unified model called LayoutFormer++.

To support the different
scenarios of conditional
layout generation

To ensure the constraint
satisfaction with high
generation quality.

image | text <eos>

<sos> image 60

or

…

…<sos>

Constraint Serialization

<sos> image | text | text || text 1 top text
2 | text 2 bottom canvas <eos>

Decoding Space RestrictionBidirectional
Transformer Encoder

Autoregressive
Transformer Decoder

Relation Constraints:
Element types: image, text, text.

Relations: text 1 at the top of the text 2,
text 2 at the bottom of the canvas.

Pruning

Sampling

22 20image

Backtracking

…

…

22

11 …

Constraint Serialization

Decoding Space Restriction

Constraint Serialization Scheme - I

Serializing Layout

• Each element can be described by 5 tokens:
the type c, left and top coordinate x and y, width w and height h.

• Following the state-of-the-art approaches, we represent a layout by
concatenating all the elements’ tokens in a sequence:

𝐿 = { 𝑠𝑜𝑠 𝑐!𝑥!𝑦!𝑤!ℎ! . . . 𝑐"𝑥"𝑦"𝑤"ℎ" ⟨𝑒𝑜𝑠⟩}

Constraint Serialization Scheme - II

Serializing Constraints

There are two critical questions in serializing constraints:

1. How to represent each constraint in a sequence format?

2. How to combine different constraints into a complete sequence?

Constraint Serialization Scheme - III

Serializing Constraints

‣ Constraint Representation
• take the constraint “put an image on top of a button” as an example.
• build the vocabulary for elements and relationships, such as

and .
• then concatenate the tokens of element and relationships into a sequence:

‣ Constraint Combination
• Concatenate the token sequences of different constraints in a fix order.

Constraint Serialization Scheme - IV

Serialization examples

Input Sequence

Gen-T: <sos> image | text | text <eos>
Gen-TS: <sos> image 36 36 | text 60 20 | text
60 20 <eos>

Gen-R: <sos> image | text | text || text 1 top
text 2 | text 2 bottom canvas <eos>

Refinement: <sos> image 20 13 35 34 | text 11
59 61 21 | text 9 87 63 19 <eos>

Completion: <sos> image 20 13 35 34 <eos> UGen: <sos> <eos>

Output Sequence

<sos> image 22 11 36 36 | text 10 58 60 20 | text 10 89 60 20 <eos>

Decoding Space Restriction Strategy - I

During inference, we introduce
‣ Constraint Pruning Module

‣ Probability Pruning Module

‣ Backtracking Mechanism

to ensure the constraint satisfaction.

Decoding Space Restriction Strategy - II

‣ Constraint Pruning Module

• In each decoding step 𝑡, the decoder predicts
the probabilities P of the possible values for
current attribute.

• The constraint pruning module prunes the
value in 𝑃 which may violate the related
constraints.

Decoding Space Restriction Strategy - III

‣ Probability Pruning Module

• It checks each value’s probability in 𝑃’.
The probabilities that are lower than
the predetermined threshold 𝜃 will be
pruned by setting as 0.

Decoding Space Restriction Strategy - IV

‣ Backtracking Mechanism

• When the probabilities are all
pruned, the backtracking
mechanism checks why the 𝑃 is
pruned as empty and decide which
step 𝑡′ to backtrack the decoding
process to.

• For example, the constraint 𝑠 =
{𝑤! ≤ 𝑤"} restricts the feasible
values of 𝑤! by 𝑤". In this case, the
step of 𝑤" is chosen as the
backtracking step.

03
Experimental
Results

Experiment Setups

Tasks and Baselines
We compare with state-of-the-art approaches on
6 typical graphic layout generation tasks:

image,
text, text

Element Types:

(1). Generation Conditioned
on Element Types

img

text 1

text 2

img

text 1

text 2

image (36,36),
text (60,20),
text (60,20)

Types with Sizes:

(2). Generation Conditioned
on Element Types and Sizes

text 1 at the top of
text 2; text 2 at the
bottom of canvas.

Types:
Relationships:

img

text 1

text 2

image, text, text

(3). Generation Conditioned
on Element Relationships

img

text 1

text 2

img

(5). Completion

img

text 1

text 2

img

text 1

text 2

(4). Refinement

img

text 1

text 2

None

(6). Unconstrained Generation

Experiment Setups

Datasets Evaluation Metrics

For Generation Quality:
mIoU, Alignment,

Overlap, FID

For Constraint Satisfaction:
Constraint Violation Rate

RICO PubLayNet

Evaluations on Sufficient Flexibility - I
Quantitative Comparison

Evaluations on Sufficient Flexibility - II
Qualitative Comparison

LayoutFormer++
Layoutgan++ BLTInput

background

image
text ×3

text
button ×7

LayoutFormer++
Layoutgan++ BLTInput

title ×4

text ×10

list ×3

LayoutFormer++ Input CLG-LO

icon
text ×3

Toolbar
at the center
of canvas

text on the left of

Text button ×5

Text button

Text button

LayoutFormer++ Input CLG-LO
list ×3 table

text ×4

text equal to list
list at the bottom of

text

Evaluations on Good Controllability - I

We first compare LayoutFormer++ with some approaches which pay attention to the
constraint satisfaction.

Evaluations on Good Controllability - II
Then we compare LayoutFormer++ framework with:

-Back: LayoutFormer++ without backtracking mechanism.
-Back&Prune: LayoutFormer++ without both pruning modules and the backtracking mechanism.

THANKS

