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Presenter Notes
Presentation Notes
Blind text image super-resolution aims to restore a high-resolution image from a low-resolution one that is corrupted by unknown degradation.
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Blind text image super-resolution

» Ifthe structure of the character is simple:
Real-world LR Text Segment BSRGAN Retrained on Text Image
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This task has some challenges. 
On one hand, each character has a specific structure, and the distorted structure easily changes its actual meaning. 
On the other hand, the complex structures and diverse font styles in Chinese further compound the difficulties. 
If the character's structure is simple, the retrained BSRGAN on text images can obtain plausible results even when the degradation is unknown.
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Blind text image super-resolution

 If the structure of the character is complex (e.g., Chinese):
Real-world LR Text Segment
AR ARAFIRIGMB TS
BSRGAN Retrained on Chinese Data
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Structure Image from Human Perspective


Presenter Notes
Presentation Notes
However, when the character contains a complex structure, the retrained BSRGAN performs well on simple structures but fails on these complex characters. 
The results often exhibit distorted structures. 
From a human perspective, we already know the right structure of each character. 
We refer to this as the structure prior. 
Therefore, in this work, we attempt to incorporate these structure priors into the restoration process of complex Chinese text images.
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Challenge:

Complex structure
* Diverse font styles
*  Unknown degradation types on real-world scenarios
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In summary, this task has the following challenges: 
First, Chinese text has complex structures. 
Second, it exhibits diverse font styles. Each character should have a unique structure but can also have diverse styles. 
Finally, the unknown degradation further exacerbates the difficulties.
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Original StyleGAN:

= Powerful generation ability
* = infinite representation
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Current StyleGAN has demonstrated powerful generation abilities in producing highly realistic face images. 
Ideally, it can generate infinite representations. 
However, as analyzed before, each character should own a unique structure while also having different styles. 
Therefore, we cannot directly use StyleGAN to encapsulate the text structure prior. 
To address this problem, we reformulate StyleGAN by replacing the single constant with discrete codes. 
The codebook stores the discrete code of each character, and each code serves as a constant for StyleGAN to generate a specific high-resolution character. 
The intermediate features encapsulate the generative structure prior and will be used to guide text super-resolution.
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The whole pipeline. It contains three parts, i.e., (1) Transformer encoder for predicting the font style, classification and bounding
boxes of each character from LR input, (i1) structure prior generation with pre-trained StyleGAN for generating reliable structure prior
for each character, and (iii) the SR process for reconstructing the SR output with the incorporation of each characters’ structure prior.
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After pretraining the text StyleGAN, we leverage it in the subsequent restoration process. 
The entire pipeline consists of three parts: (i) a Transformer encoder for predicting the font style, classification, and bounding boxes of each character from the low-resolution input, 
(ii) structure prior generation using pre-trained StyleGAN to generate reliable structure priors for each character, 
and (iii) the super-resolution process for reconstructing the output with the incorporation of each character's structure prior.


= Motivation Method Conclusion

000 0000000000 O

LR Features

Structure Prior

fomtan | (A e
[Conv][Conv](— ———————— > [Conv][ConV] ,-

J Shared Parameters l ()

Structure prior transform module.
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Now let’s move onto the details of our structure prior transform module. 
Each low-resolution character is cropped and aligned using the bounding boxes and then super-resolved with the guidance of its structure prior.
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Pure Synthetic Text Images Using PIL package:
* More than 100 font styles;
* Background image is obtained from DF2K dataset

Ground-truth Image
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Structure Image
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Since high-quality Chinese text images are not available, we synthesize them using the PIL package. 
We collected more than 100 font styles, and the background images are cropped from the DF2K dataset. 
During the synthesis process, we obtain the corresponding structure image, classification label, and bounding boxes for each character. 
Finally, we adopt BSRGAN and Real-ESRGAN to obtain the low-resolution text images.
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Now, let's take a look at our restoration results on real-world low-resolution text segments. 
We can observe that our restoration results are not only visually plausible but also exhibit accurate structures.
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Here are additional restoration results from real-world low-resolution text images. 
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Wrong recognition when the degradation is severe.
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It should be noted that when the degradation is severe, it becomes challenging to predict the correct classification label, leading to errors in the guidance.
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Manually correct the character recognition result.
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By manually correcting the character recognition results, our super-resolution results improve significantly. 
This also emphasizes the importance of our generative structure prior for achieving superior super-resolution performance.


W interpolation for two text images with different font styles.
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The parameter "w" is expected to control the font styles and is shared for all characters in the same sentence. 
In our method, we utilize interpolation for "w" between two text images with different font styles. 
Through this interpolation, we find that "w" can effectively capture the font styles, and the results demonstrate smooth transitions.


W interpolation for two text images with different characters.
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Let's take a look at another interpolation result, Here we use two text images with different characters.
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W interpolation for two text images with different locations:
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We also have an interpolation result from two text images with different locations. 
Both of these examples further illustrate that "w" in our work successfully controls the font styles, just as it does in the original StyleGAN.
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Conclusion

* Embedding the generative structure prior for blind SR of text images
* The combination of a codebook for storing distinctive character specific codes and a retrofitted
StyleGAN for controlling font style cope well with complicated structures
* Potentially extending to:
» few-shot font generation
» text image completion for ancient documents
» font style transformation
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A simple text image super-resolution package for post-processing text region:

Project Page

pip install textbsr

Run on the terminal command

textbsr -i [LR_TEXT PATH]-b [BACKGROUND SR _PATH] -s

Run on the python environment

from textbsr import textbsr
textbsr.bsr(input_path='./LQs', bg path='./RealESRGANResults', save text=True)

____________________________
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To sum up, our work focuses on embedding generative structure priors for blind super-resolution of text images. 
Specifically, we employ a combination of a codebook for storing distinctive character codes and a reformulated StyleGAN for controlling the font style. 
This approach has the potential to extend to  other tasks, like text image completion for ancient documents, and font style transformation.
In addition, we propose a simple text image super-resolution package that can be used in conjunction with any blind image super-resolution method to enhance the performance of text regions. 
This package can be easily used via terminal command or within a Python environment.
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Here is a simplified pipeline: For a given low-resolution  image, we first use BSRGAN or Real-ESRGAN to restore the entire image. 
Then, we utilize our package to post-process the text region, resulting in improved performance and quality.
Thank you for listening.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

