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Overview
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This work focuses on accelerating diffusion models for stochastic trajectory prediction.
• We propose a novel LEapfrog Diffusion model (LED), which is a denoising-diffusion-based model.
• We design a trainable leapfrog initializer to directly model complex denoised distributions, 

accelerating inference speed.
• Our method achieves SOTA performance on four datasets while speeds up the inference by 

around 20 times compared to the standard diffusion model, satisfying real-time prediction needs. 
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Introduction
• Stochastic Trajectory Prediction

Given the past trajectories, predict the possible future trajectories.

Predictor

Previous/Observed Trajectories Future/Predicted Trajectories
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Introduction
• Stochastic Trajectory Prediction

indeterminacy of human behaviors multi-modal distribution

Given the past trajectories, predict the possible future trajectories.
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• VAE, GAN, Normalizing Flow, Diffusion Model

Introduction
• Deep Generative Models for Stochastic Trajectory Prediction

Quality Diversity Fast Related Works

VAE ✅ ✅
PECNet, 
Trajectron++,
GroupNet

Normalizing Flow ✅ ✅ CF-VAE

GAN ✅ ✅
Social-GAN, 
NMMP

Diffusion Model ✅ ✅ MID
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Ours



Diffusion Models
• Diffusion Process

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.
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Diffusion Models
• Diffusion Process

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.
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(2a) initializes the diffused trajectory using 

the GT future trajectory



Diffusion Models
• Diffusion Process

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.
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(2b) uses a forward diffusion operation 

𝑓!"##$%& ⋅ to successively add noises to 

𝐘'() and obtain the diffused trajectory 𝐘'

Note:

1) No trainable parameters yet!

2) Fixed noise schedule.



Diffusion Models
• Denoising Process

Denoising steps

Past trajectory
GT future

Predicted distribution

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.
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Diffusion Models
• Denoising Process

Denoising steps

Past trajectory
GT future

Predicted distribution

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.

(2c) draws K independent and identically 

distributed samples to initialize denoised 

trajectories from a normal distribution.
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Diffusion Models
• Denoising Process

Denoising steps

Past trajectory
GT future

Predicted distribution

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.

(2d) iteratively applies a denoising operation 

𝑓!&*+"%&(⋅) to obtain the denoised trajectory

conditioned on past trajectories.

12



Methodology – Leapfrog Diffusion Model (LED)
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Motivation: LED uses the leapfrog initializer to directly estimate the denoised 
distribution and substitute a long sequence of traditional denoising steps.



Methodology – LED
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• Mathematically,

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

Share the same diffusion process as diffusion models to 
preserve a promising representation ability;



Methodology – LED
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• Mathematically,

Past trajectory of the ego/neighboring agent.

Future trajectory of the ego agent. 

(3c) proposes a novel leapfrog initializer 𝑓,-.(⋅) to directly 
model the 𝜏-th denoised distribution 𝒫((𝐘/); 

Denoising process with 𝜏-steps!



Core Module – Leapfrog Initializer
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To ease the learning burden of the model, we disassemble the distribution 𝒫((𝐘/) into three 
representative parts: the mean, global variance and sample prediction. 



Core Module – Leapfrog Initializer
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Mean estimation: infer the mean trajectory as a 
backbone of prediction.



Core Module – Leapfrog Initializer
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Variance estimation: infer the standard deviation 
and control the prediction diversity



Core Module – Leapfrog Initializer
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Sample prediction: predict K samples 
simultaneously to better allocate sample position.



Core Module – Leapfrog Initializer
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reparameterization



Core Module – Leapfrog Initializer
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Loss function:

best prediction loss uncertainty loss



Inference

22



Experiment

• Sport datasets

23

SOTA performance!



Experiment

• Pedestrian dataset

24



Experiment

• Ablation on KEY components
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Each component is beneficial!



Experiment

• Ablation on steps (time consumption) and performance
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Experiment

• Ablation on fast sampling methods
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Experiment

• Visualization comparison on NBA
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Light color: past trajectory; blue/red/green color: two teams and the basketball. 



Experiment

• Visualization comparison of different sampling mechanism
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Thanks for your listening!
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