
1

Federated Domain Generalization with

Generalization Adjustment

Ruipeng Zhang1,2 , Qinwei Xu1,2, Jiangchao Yao1,2, Ya Zhang1,2, Qi Tian3, Yanfeng Wang1,2

1 Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
2 Shanghai AI Laboratory 3 Huawei Cloud & AI

Poster Tag: TUE-AM-377

2

Summary of highlights

• Introduce a novel global optimization objective for FedDG with a new variance reduction
regularizer that can constrain the fairness of the global model.

• Design an FL-friendly method named Generalization Adjustment (GA) to optimize the
above objective by reweighting the aggregation weights among training clients.

• Conduct extensive experiments on four benchmark datasets, demonstrating consistent
improvement when combining GA with different federated learning algorithms.

Global Objective New Global Objective with Fairness Regularizer

Generalization
AdjustmentServer

Unseen Domain

Domain 3Domain 1 Domain 2

(b) Generalization Adjustment

Unseen Domain

Domain 3Domain 1 Domain 2

FixedServer

(a) FedAvg

Aggregation
on

client models

Mini-Batch
Training

Unseen Test
Domain

Source Domains for DG Source Domains for FedDG

Generalization
model

Client 1 Client 2 Client 3

DG FedDG

SOTA DG requires
access multi-domains

to capture the
invariant patterns

objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG
In Eq. (2), a and ✓i cannot be simultaneously opti-

mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap G bDi

(✓)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters ✓i by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
G bDi

(✓) is shown below. Formally, given a specific domain
k, the relationship between the global parameter ✓ and the
local model parameter ✓k can be expressed as follows,

✓ = ✓k +�✓, where �✓ = (1� ak)✓k +
P

i 6=k ai✓i.

Let us consider �✓ as a perturbation on ✓k. For bE bDk
(✓),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i 6=k and the degree of perturbation �✓ will
decline. In this case, ✓ is closer to the local optimal ✓k, mak-
ing the loss bE bDk

(✓) in domain bDk decrease. And in the next
round, the new global model ✓ is used as the initial weight
for all clients, which will result in closer proximity between
✓k and �✓, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the bE bDk

(✓⇤k) can
be considered as a constant, so G bDk

(✓) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is bD = { bDi}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(✓ri , bDi, E)

that indicates the model ✓ri is trained on bDi dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
✓r first. Formally, the following generalization gap will be
computed.

G bDi
(✓r) = bE bDi

(✓r)� bE bDi
(✓r�10

i), i = 1, 2, . . . ,M.

Then, after the local training by Alg(✓ri , bDi, E), we send
both G bDi

(✓r) and the updated local model parameter ✓r0i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model ✓ = ✓0, M clients bD =
{ bD1, bD2, · · · , bDM}, the initial weights a0 =
(1
M , 1

M , · · · , 1
M). (Hyperparameters: local epoch E,

total communication round R and step size d for GA.)
Output: Global model ✓R.

1: Server: initialize the local models ✓0i by the global
model: ✓0i = ✓0.

2: for all r in 0 · · ·R� 1 do
3: Client:

Compute G bDi
(✓r) for ✓r on each client.

Training the local model ✓ri on domain bDi:
✓r0i = Alg(✓ri , bDi, E).

Get the empirical loss on local model bE bDi
(✓r0i).

4: Server:
Update ar by ar�1 and {G bDi

(✓r)}Mi=1:

ar = GA(ar�1, {G bDi
(✓r)}Mi=1, d

r).

Aggregate ✓r+1
i with ar to get a new global model:

✓r+1 =
PM

i=1 a
r
i · ✓r0i .

5: Broadcast ✓r+1 to all clients ✓r+1
i = ✓r+1.

6: end for

{G bDi
(✓r)}Mi=1 and the previous weights ar�1, we compute

ar by the following equations.

ar0i =
(G bDi

(✓r)� µ) ⇤ dr

maxj(G bDj
(✓r)� µ)

+ar�1
i , ari =

ar0iPM
i=1 a

r0
i

, (3)

where µ = 1
M

PM
i=1 G bDi

(✓r) and dr = (1 � r/R) ⇤ d.
d 2 (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for �
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar0i
greater than 0 and restrain the sum of ar0i to 1. Then, the
global model ✓r+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
✓r+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-

43957

3

Federated Domain Generalization with

Generalization Adjustment

Ruipeng Zhang1,2 , Qinwei Xu1,2, Jiangchao Yao1,2, Ya Zhang1,2, Qi Tian3, Yanfeng Wang1,2

1 Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
2 Shanghai AI Laboratory 3 Huawei Cloud & AI

Poster Tag: TUE-AM-377

Introduction Motivation Method Experimental Results Conclusion 4

Aggregation
on

client models

Mini-Batch
Training

Unseen Test
Domain

Source Domains for DG Source Domains for FedDG

Generalization
model

Client 1 Client 2 Client 3

DG FedDG

SOTA DG requires
access multi-domains

to capture the
invariant patterns

Domain Generalization (DG)
• Learn a model under domain shifts to unseen domains.

FedDG disallows direct data sharing
among clients!

Problems of existing studies
• Data heterogeneity in the form of domain shift is very

common in federated learning and needs to be
addressed.

• Most current DG methods cannot be applied on FedDG
scenarios.

Federated Domain Generalization (FedDG)
• Learn a global model in a federated learning system

with domain shifts across clients to generalize on
clients with unseen domains.

Introduction Motivation Method Experimental Results Conclusion 5

other method, like [46], trains the personalized models on
each client and selects the most similar personalized local
model for the unseen domains. Unlike these methods im-
proved in the local training, we focus on the global aggre-
gation. And we argue that the generalization ability needs
to be considered in the global optimization of FL.

3. Method
3.1. Preliminaries

Denote the set of all domains as D = {D1, D2, . . . }
and the sampled counterpart for training as bD =
{ bD1, bD2, · · · , bDM} where M is the number of training
domains (or clients). Let (x, y) denote the sample pair
from one domain, and L denote the loss function mea-
suring the distance between the model prediction f(x; ✓)
(parameterized by ✓) and the label y. Then, given a do-
main Di 2 D, we define the expected risk as EDi(✓) =
E(x,y)2Di

[L(f(x; ✓), y)], and given a sampled counterpart
bDi = {xi

j , y
i
j}

Ni
j=1, we define the empirical risk as bE bDi

(✓) =
1
Ni

PNi

j=1 L
�
f(xi

j ; ✓), y
i
j

�
.

The ideal objective of the FedDG is to minimize the
overall loss function on D. In practice, we usually have the
sampled domains bD and the corresponding sampled data
points {xi

j , y
i
j}

Ni
j=1 in each domain bDi. Thus, instead of the

unknown expected risk, we optimize the following empiri-
cal risk objective:

min
✓

ED(✓) ⇡
MX

i=1

pi bE bDi
(✓) =

MX

i=1

pi

NiX

j=1

L
⇣
f(xi

j ; ✓), y
i
j

⌘

s.t. pi =
NiPM

i0=1 Ni0
.

(1)

We shall note two distinct points in FedDG compared to
the cross-device federated learning [32]. First, FedDG fol-
lows the cross-silo federated learning, and the client/domain
number M is small, while the client number in cross-device
federated learning is large and the client sampling is usually
performed before the global aggregation. Second, although
the local data of each client in cross-device federated learn-
ing is heterogeneous, they are all from the same overall dis-
tribution. In contrast, one client corresponds to one domain
in FedDG and the data is not only heterogeneous but from
different domains. These make FedDG more challenging
than ordinary federated learning. Therefore, in the FedDG
scenarios, the global objective in Eq. (1) can easily incur
conflicts among local models, and the local training process
tends to overfit the local data distribution of each client do-
main, both of which reduce the generalization performance
of the global model.

3.2. Motivation
In centralized learning, generalizable optimization tech-

nique, such as invariant risks [1], robust optimization [20],

Figure 2. The overall structure of (a) FedAvg and (b) General-
ization Adjustment. The colored models ✓i and weights ai are
learnable and the weights pi are fixed during training (i = 1, 2, 3).
The global model ✓new will broadcast to each domain in the next
round. GA has a new global objective with a fairness regularizer
which will be optimized by dynamically calibrating the weights.

fairness and flatness [6, 10], has been well studied,. How-
ever, all of them require data from multiple domains in-
volved in a mini-batch, which is not applicable in FedDG
due to its privacy-preserving nature that each domain is iso-
lated into each client. Fortunately, we notice that the flat-
ness of each domain can be reflected by the generalization
gaps between the global model and the local model, which
is defined as

G bDi
(✓) = G bDi

(
P

j aj✓
⇤

j) = bE bDi
(
P

j aj✓
⇤

j)� bE bDi
(✓⇤i),

where ✓⇤i means the local optimal on domain cDi and ✓ =P
j aj✓

⇤

j . Based on the above generalization gaps and the
design inspiration from [20], we propose a new global ob-
jective for FedDG that considers the variance of generaliza-
tion gaps among local clients to guarantee the flatness of the
optimal global model on all domains. The global objective
of our method is shown in the following.

min
✓1,...,✓M ,a

bE bD(✓) =
MX

i=1

ai
bE bDi

(✓) + �Var({G bDi
(✓)}Mi=1)

s.t.
MX

i=1

ai = 1, ✓ =
MX

i=1

ai · ✓i, and 8i, ai � 0.

(2)

Here we denote the learnable client/domain weights as
a = (a1, a2, · · · , aM), and � 2 [0,1) controls the bal-
ance between reducing global risk and enforcing the fair-
ness among generalization gaps, with � = 0 recovering the
FedAvg algorithm, and � ! 1 only making the generaliza-
tion gaps equal. Different from the V-REx objective in [20],
we use the generalization gaps other than the risks, and the
V-REx can be seen as a particular case of our method when
the optimal local risk E⇤

Di
is zero. Another method, Fed-

SAM [36], has a similar motivation that constrains the flat-
ness during local training. However, the flatness on the local
objectives cannot guarantee the flatness of the overall global

33956

Objective of FedAvg:

𝒑𝐢 ≠ data distribution!

Observation:

• Above objective cannot describe the generalizable goal under domain shifts.
• the flatness (fair performance) of each domain can be reflected by the

generalization gaps.

other method, like [46], trains the personalized models on
each client and selects the most similar personalized local
model for the unseen domains. Unlike these methods im-
proved in the local training, we focus on the global aggre-
gation. And we argue that the generalization ability needs
to be considered in the global optimization of FL.

3. Method
3.1. Preliminaries

Denote the set of all domains as D = {D1, D2, . . . }
and the sampled counterpart for training as bD =
{ bD1, bD2, · · · , bDM} where M is the number of training
domains (or clients). Let (x, y) denote the sample pair
from one domain, and L denote the loss function mea-
suring the distance between the model prediction f(x; ✓)
(parameterized by ✓) and the label y. Then, given a do-
main Di 2 D, we define the expected risk as EDi(✓) =
E(x,y)2Di

[L(f(x; ✓), y)], and given a sampled counterpart
bDi = {xi

j , y
i
j}

Ni
j=1, we define the empirical risk as bE bDi

(✓) =
1
Ni

PNi

j=1 L
�
f(xi

j ; ✓), y
i
j

�
.

The ideal objective of the FedDG is to minimize the
overall loss function on D. In practice, we usually have the
sampled domains bD and the corresponding sampled data
points {xi

j , y
i
j}

Ni
j=1 in each domain bDi. Thus, instead of the

unknown expected risk, we optimize the following empiri-
cal risk objective:

min
✓

ED(✓) ⇡
MX

i=1

pi bE bDi
(✓) =

MX

i=1

pi

NiX

j=1

L
⇣
f(xi

j ; ✓), y
i
j

⌘

s.t. pi =
NiPM

i0=1 Ni0
.

(1)

We shall note two distinct points in FedDG compared to
the cross-device federated learning [32]. First, FedDG fol-
lows the cross-silo federated learning, and the client/domain
number M is small, while the client number in cross-device
federated learning is large and the client sampling is usually
performed before the global aggregation. Second, although
the local data of each client in cross-device federated learn-
ing is heterogeneous, they are all from the same overall dis-
tribution. In contrast, one client corresponds to one domain
in FedDG and the data is not only heterogeneous but from
different domains. These make FedDG more challenging
than ordinary federated learning. Therefore, in the FedDG
scenarios, the global objective in Eq. (1) can easily incur
conflicts among local models, and the local training process
tends to overfit the local data distribution of each client do-
main, both of which reduce the generalization performance
of the global model.

3.2. Motivation
In centralized learning, generalizable optimization tech-

nique, such as invariant risks [1], robust optimization [20],

Figure 2. The overall structure of (a) FedAvg and (b) General-
ization Adjustment. The colored models ✓i and weights ai are
learnable and the weights pi are fixed during training (i = 1, 2, 3).
The global model ✓new will broadcast to each domain in the next
round. GA has a new global objective with a fairness regularizer
which will be optimized by dynamically calibrating the weights.

fairness and flatness [6, 10], has been well studied,. How-
ever, all of them require data from multiple domains in-
volved in a mini-batch, which is not applicable in FedDG
due to its privacy-preserving nature that each domain is iso-
lated into each client. Fortunately, we notice that the flat-
ness of each domain can be reflected by the generalization
gaps between the global model and the local model, which
is defined as

G bDi
(✓) = G bDi

(
P

j aj✓
⇤

j) = bE bDi
(
P

j aj✓
⇤

j)� bE bDi
(✓⇤i),

where ✓⇤i means the local optimal on domain cDi and ✓ =P
j aj✓

⇤

j . Based on the above generalization gaps and the
design inspiration from [20], we propose a new global ob-
jective for FedDG that considers the variance of generaliza-
tion gaps among local clients to guarantee the flatness of the
optimal global model on all domains. The global objective
of our method is shown in the following.

min
✓1,...,✓M ,a

bE bD(✓) =
MX

i=1

ai
bE bDi

(✓) + �Var({G bDi
(✓)}Mi=1)

s.t.
MX

i=1

ai = 1, ✓ =
MX

i=1

ai · ✓i, and 8i, ai � 0.

(2)

Here we denote the learnable client/domain weights as
a = (a1, a2, · · · , aM), and � 2 [0,1) controls the bal-
ance between reducing global risk and enforcing the fair-
ness among generalization gaps, with � = 0 recovering the
FedAvg algorithm, and � ! 1 only making the generaliza-
tion gaps equal. Different from the V-REx objective in [20],
we use the generalization gaps other than the risks, and the
V-REx can be seen as a particular case of our method when
the optimal local risk E⇤

Di
is zero. Another method, Fed-

SAM [36], has a similar motivation that constrains the flat-
ness during local training. However, the flatness on the local
objectives cannot guarantee the flatness of the overall global

33956

Assume that a global model with fair performance among all clients may lead to better generalization performance.

Introduction Motivation Method Experimental Results Conclusion 6

Objective with fairness:

other method, like [46], trains the personalized models on
each client and selects the most similar personalized local
model for the unseen domains. Unlike these methods im-
proved in the local training, we focus on the global aggre-
gation. And we argue that the generalization ability needs
to be considered in the global optimization of FL.

3. Method
3.1. Preliminaries

Denote the set of all domains as D = {D1, D2, . . . }
and the sampled counterpart for training as bD =
{ bD1, bD2, · · · , bDM} where M is the number of training
domains (or clients). Let (x, y) denote the sample pair
from one domain, and L denote the loss function mea-
suring the distance between the model prediction f(x; ✓)
(parameterized by ✓) and the label y. Then, given a do-
main Di 2 D, we define the expected risk as EDi(✓) =
E(x,y)2Di

[L(f(x; ✓), y)], and given a sampled counterpart
bDi = {xi

j , y
i
j}

Ni
j=1, we define the empirical risk as bE bDi

(✓) =
1
Ni

PNi

j=1 L
�
f(xi

j ; ✓), y
i
j

�
.

The ideal objective of the FedDG is to minimize the
overall loss function on D. In practice, we usually have the
sampled domains bD and the corresponding sampled data
points {xi

j , y
i
j}

Ni
j=1 in each domain bDi. Thus, instead of the

unknown expected risk, we optimize the following empiri-
cal risk objective:

min
✓

ED(✓) ⇡
MX

i=1

pi bE bDi
(✓) =

MX

i=1

pi

NiX

j=1

L
⇣
f(xi

j ; ✓), y
i
j

⌘

s.t. pi =
NiPM

i0=1 Ni0
.

(1)

We shall note two distinct points in FedDG compared to
the cross-device federated learning [32]. First, FedDG fol-
lows the cross-silo federated learning, and the client/domain
number M is small, while the client number in cross-device
federated learning is large and the client sampling is usually
performed before the global aggregation. Second, although
the local data of each client in cross-device federated learn-
ing is heterogeneous, they are all from the same overall dis-
tribution. In contrast, one client corresponds to one domain
in FedDG and the data is not only heterogeneous but from
different domains. These make FedDG more challenging
than ordinary federated learning. Therefore, in the FedDG
scenarios, the global objective in Eq. (1) can easily incur
conflicts among local models, and the local training process
tends to overfit the local data distribution of each client do-
main, both of which reduce the generalization performance
of the global model.

3.2. Motivation
In centralized learning, generalizable optimization tech-

nique, such as invariant risks [1], robust optimization [20],

Figure 2. The overall structure of (a) FedAvg and (b) General-
ization Adjustment. The colored models ✓i and weights ai are
learnable and the weights pi are fixed during training (i = 1, 2, 3).
The global model ✓new will broadcast to each domain in the next
round. GA has a new global objective with a fairness regularizer
which will be optimized by dynamically calibrating the weights.

fairness and flatness [6, 10], has been well studied,. How-
ever, all of them require data from multiple domains in-
volved in a mini-batch, which is not applicable in FedDG
due to its privacy-preserving nature that each domain is iso-
lated into each client. Fortunately, we notice that the flat-
ness of each domain can be reflected by the generalization
gaps between the global model and the local model, which
is defined as

G bDi
(✓) = G bDi

(
P

j aj✓
⇤

j) = bE bDi
(
P

j aj✓
⇤

j)� bE bDi
(✓⇤i),

where ✓⇤i means the local optimal on domain cDi and ✓ =P
j aj✓

⇤

j . Based on the above generalization gaps and the
design inspiration from [20], we propose a new global ob-
jective for FedDG that considers the variance of generaliza-
tion gaps among local clients to guarantee the flatness of the
optimal global model on all domains. The global objective
of our method is shown in the following.

min
✓1,...,✓M ,a

bE bD(✓) =
MX

i=1

ai
bE bDi

(✓) + �Var({G bDi
(✓)}Mi=1)

s.t.
MX

i=1

ai = 1, ✓ =
MX

i=1

ai · ✓i, and 8i, ai � 0.

(2)

Here we denote the learnable client/domain weights as
a = (a1, a2, · · · , aM), and � 2 [0,1) controls the bal-
ance between reducing global risk and enforcing the fair-
ness among generalization gaps, with � = 0 recovering the
FedAvg algorithm, and � ! 1 only making the generaliza-
tion gaps equal. Different from the V-REx objective in [20],
we use the generalization gaps other than the risks, and the
V-REx can be seen as a particular case of our method when
the optimal local risk E⇤

Di
is zero. Another method, Fed-

SAM [36], has a similar motivation that constrains the flat-
ness during local training. However, the flatness on the local
objectives cannot guarantee the flatness of the overall global

33956

Considering the variance of generalization gaps among local

clients to guarantee the flatness of the optimal global model
on all domains.

How to optimize it under federated learning?

Introduction Motivation Method Experimental Results Conclusion 7

Objective with fairness:

other method, like [46], trains the personalized models on
each client and selects the most similar personalized local
model for the unseen domains. Unlike these methods im-
proved in the local training, we focus on the global aggre-
gation. And we argue that the generalization ability needs
to be considered in the global optimization of FL.

3. Method
3.1. Preliminaries

Denote the set of all domains as D = {D1, D2, . . . }
and the sampled counterpart for training as bD =
{ bD1, bD2, · · · , bDM} where M is the number of training
domains (or clients). Let (x, y) denote the sample pair
from one domain, and L denote the loss function mea-
suring the distance between the model prediction f(x; ✓)
(parameterized by ✓) and the label y. Then, given a do-
main Di 2 D, we define the expected risk as EDi(✓) =
E(x,y)2Di

[L(f(x; ✓), y)], and given a sampled counterpart
bDi = {xi

j , y
i
j}

Ni
j=1, we define the empirical risk as bE bDi

(✓) =
1
Ni

PNi

j=1 L
�
f(xi

j ; ✓), y
i
j

�
.

The ideal objective of the FedDG is to minimize the
overall loss function on D. In practice, we usually have the
sampled domains bD and the corresponding sampled data
points {xi

j , y
i
j}

Ni
j=1 in each domain bDi. Thus, instead of the

unknown expected risk, we optimize the following empiri-
cal risk objective:

min
✓

ED(✓) ⇡
MX

i=1

pi bE bDi
(✓) =

MX

i=1

pi

NiX

j=1

L
⇣
f(xi

j ; ✓), y
i
j

⌘

s.t. pi =
NiPM

i0=1 Ni0
.

(1)

We shall note two distinct points in FedDG compared to
the cross-device federated learning [32]. First, FedDG fol-
lows the cross-silo federated learning, and the client/domain
number M is small, while the client number in cross-device
federated learning is large and the client sampling is usually
performed before the global aggregation. Second, although
the local data of each client in cross-device federated learn-
ing is heterogeneous, they are all from the same overall dis-
tribution. In contrast, one client corresponds to one domain
in FedDG and the data is not only heterogeneous but from
different domains. These make FedDG more challenging
than ordinary federated learning. Therefore, in the FedDG
scenarios, the global objective in Eq. (1) can easily incur
conflicts among local models, and the local training process
tends to overfit the local data distribution of each client do-
main, both of which reduce the generalization performance
of the global model.

3.2. Motivation
In centralized learning, generalizable optimization tech-

nique, such as invariant risks [1], robust optimization [20],

Figure 2. The overall structure of (a) FedAvg and (b) General-
ization Adjustment. The colored models ✓i and weights ai are
learnable and the weights pi are fixed during training (i = 1, 2, 3).
The global model ✓new will broadcast to each domain in the next
round. GA has a new global objective with a fairness regularizer
which will be optimized by dynamically calibrating the weights.

fairness and flatness [6, 10], has been well studied,. How-
ever, all of them require data from multiple domains in-
volved in a mini-batch, which is not applicable in FedDG
due to its privacy-preserving nature that each domain is iso-
lated into each client. Fortunately, we notice that the flat-
ness of each domain can be reflected by the generalization
gaps between the global model and the local model, which
is defined as

G bDi
(✓) = G bDi

(
P

j aj✓
⇤

j) = bE bDi
(
P

j aj✓
⇤

j)� bE bDi
(✓⇤i),

where ✓⇤i means the local optimal on domain cDi and ✓ =P
j aj✓

⇤

j . Based on the above generalization gaps and the
design inspiration from [20], we propose a new global ob-
jective for FedDG that considers the variance of generaliza-
tion gaps among local clients to guarantee the flatness of the
optimal global model on all domains. The global objective
of our method is shown in the following.

min
✓1,...,✓M ,a

bE bD(✓) =
MX

i=1

ai
bE bDi

(✓) + �Var({G bDi
(✓)}Mi=1)

s.t.
MX

i=1

ai = 1, ✓ =
MX

i=1

ai · ✓i, and 8i, ai � 0.

(2)

Here we denote the learnable client/domain weights as
a = (a1, a2, · · · , aM), and � 2 [0,1) controls the bal-
ance between reducing global risk and enforcing the fair-
ness among generalization gaps, with � = 0 recovering the
FedAvg algorithm, and � ! 1 only making the generaliza-
tion gaps equal. Different from the V-REx objective in [20],
we use the generalization gaps other than the risks, and the
V-REx can be seen as a particular case of our method when
the optimal local risk E⇤

Di
is zero. Another method, Fed-

SAM [36], has a similar motivation that constrains the flat-
ness during local training. However, the flatness on the local
objectives cannot guarantee the flatness of the overall global

33956

objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG
In Eq. (2), a and ✓i cannot be simultaneously opti-

mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap G bDi

(✓)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters ✓i by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
G bDi

(✓) is shown below. Formally, given a specific domain
k, the relationship between the global parameter ✓ and the
local model parameter ✓k can be expressed as follows,

✓ = ✓k +�✓, where �✓ = (1� ak)✓k +
P

i 6=k ai✓i.

Let us consider �✓ as a perturbation on ✓k. For bE bDk
(✓),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i 6=k and the degree of perturbation �✓ will
decline. In this case, ✓ is closer to the local optimal ✓k, mak-
ing the loss bE bDk

(✓) in domain bDk decrease. And in the next
round, the new global model ✓ is used as the initial weight
for all clients, which will result in closer proximity between
✓k and �✓, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the bE bDk

(✓⇤k) can
be considered as a constant, so G bDk

(✓) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is bD = { bDi}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(✓ri , bDi, E)

that indicates the model ✓ri is trained on bDi dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
✓r first. Formally, the following generalization gap will be
computed.

G bDi
(✓r) = bE bDi

(✓r)� bE bDi
(✓r�10

i), i = 1, 2, . . . ,M.

Then, after the local training by Alg(✓ri , bDi, E), we send
both G bDi

(✓r) and the updated local model parameter ✓r0i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model ✓ = ✓0, M clients bD =
{ bD1, bD2, · · · , bDM}, the initial weights a0 =
(1
M , 1

M , · · · , 1
M). (Hyperparameters: local epoch E,

total communication round R and step size d for GA.)
Output: Global model ✓R.

1: Server: initialize the local models ✓0i by the global
model: ✓0i = ✓0.

2: for all r in 0 · · ·R� 1 do
3: Client:

Compute G bDi
(✓r) for ✓r on each client.

Training the local model ✓ri on domain bDi:
✓r0i = Alg(✓ri , bDi, E).

Get the empirical loss on local model bE bDi
(✓r0i).

4: Server:
Update ar by ar�1 and {G bDi

(✓r)}Mi=1:

ar = GA(ar�1, {G bDi
(✓r)}Mi=1, d

r).

Aggregate ✓r+1
i with ar to get a new global model:

✓r+1 =
PM

i=1 a
r
i · ✓r0i .

5: Broadcast ✓r+1 to all clients ✓r+1
i = ✓r+1.

6: end for

{G bDi
(✓r)}Mi=1 and the previous weights ar�1, we compute

ar by the following equations.

ar0i =
(G bDi

(✓r)� µ) ⇤ dr

maxj(G bDj
(✓r)� µ)

+ar�1
i , ari =

ar0iPM
i=1 a

r0
i

, (3)

where µ = 1
M

PM
i=1 G bDi

(✓r) and dr = (1 � r/R) ⇤ d.
d 2 (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for �
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar0i
greater than 0 and restrain the sum of ar0i to 1. Then, the
global model ✓r+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
✓r+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-

43957

Mechanism of relationship between 𝒂𝒌 and 𝐆"𝐃𝒌(𝛉𝐤)

𝑎" ↑⟹ ∆𝜃 ↓⇒ 𝐆#𝐃𝒌(𝛉𝐤) ↓

𝑎" ↓⟹ ∆𝜃 ↑⇒ 𝐆#𝐃𝒌(𝛉𝐤) ↑

Introduction Motivation Method Experimental Results Conclusion 8

Global Objective New Global Objective with Fairness Regularizer

Generalization
AdjustmentServer

Unseen Domain

Domain 3Domain 1 Domain 2

(b) Generalization Adjustment

Unseen Domain

Domain 3Domain 1 Domain 2

FixedServer

(a) FedAvg

Introduction Motivation Method Experimental Results Conclusion 9

objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG
In Eq. (2), a and ✓i cannot be simultaneously opti-

mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap G bDi

(✓)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters ✓i by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
G bDi

(✓) is shown below. Formally, given a specific domain
k, the relationship between the global parameter ✓ and the
local model parameter ✓k can be expressed as follows,

✓ = ✓k +�✓, where �✓ = (1� ak)✓k +
P

i 6=k ai✓i.

Let us consider �✓ as a perturbation on ✓k. For bE bDk
(✓),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i 6=k and the degree of perturbation �✓ will
decline. In this case, ✓ is closer to the local optimal ✓k, mak-
ing the loss bE bDk

(✓) in domain bDk decrease. And in the next
round, the new global model ✓ is used as the initial weight
for all clients, which will result in closer proximity between
✓k and �✓, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the bE bDk

(✓⇤k) can
be considered as a constant, so G bDk

(✓) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is bD = { bDi}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(✓ri , bDi, E)

that indicates the model ✓ri is trained on bDi dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
✓r first. Formally, the following generalization gap will be
computed.

G bDi
(✓r) = bE bDi

(✓r)� bE bDi
(✓r�10

i), i = 1, 2, . . . ,M.

Then, after the local training by Alg(✓ri , bDi, E), we send
both G bDi

(✓r) and the updated local model parameter ✓r0i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model ✓ = ✓0, M clients bD =
{ bD1, bD2, · · · , bDM}, the initial weights a0 =
(1
M , 1

M , · · · , 1
M). (Hyperparameters: local epoch E,

total communication round R and step size d for GA.)
Output: Global model ✓R.

1: Server: initialize the local models ✓0i by the global
model: ✓0i = ✓0.

2: for all r in 0 · · ·R� 1 do
3: Client:

Compute G bDi
(✓r) for ✓r on each client.

Training the local model ✓ri on domain bDi:
✓r0i = Alg(✓ri , bDi, E).

Get the empirical loss on local model bE bDi
(✓r0i).

4: Server:
Update ar by ar�1 and {G bDi

(✓r)}Mi=1:

ar = GA(ar�1, {G bDi
(✓r)}Mi=1, d

r).

Aggregate ✓r+1
i with ar to get a new global model:

✓r+1 =
PM

i=1 a
r
i · ✓r0i .

5: Broadcast ✓r+1 to all clients ✓r+1
i = ✓r+1.

6: end for

{G bDi
(✓r)}Mi=1 and the previous weights ar�1, we compute

ar by the following equations.

ar0i =
(G bDi

(✓r)� µ) ⇤ dr

maxj(G bDj
(✓r)� µ)

+ar�1
i , ari =

ar0iPM
i=1 a

r0
i

, (3)

where µ = 1
M

PM
i=1 G bDi

(✓r) and dr = (1 � r/R) ⇤ d.
d 2 (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for �
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar0i
greater than 0 and restrain the sum of ar0i to 1. Then, the
global model ✓r+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
✓r+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-

43957

objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG
In Eq. (2), a and ✓i cannot be simultaneously opti-

mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap G bDi

(✓)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters ✓i by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
G bDi

(✓) is shown below. Formally, given a specific domain
k, the relationship between the global parameter ✓ and the
local model parameter ✓k can be expressed as follows,

✓ = ✓k +�✓, where �✓ = (1� ak)✓k +
P

i 6=k ai✓i.

Let us consider �✓ as a perturbation on ✓k. For bE bDk
(✓),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i 6=k and the degree of perturbation �✓ will
decline. In this case, ✓ is closer to the local optimal ✓k, mak-
ing the loss bE bDk

(✓) in domain bDk decrease. And in the next
round, the new global model ✓ is used as the initial weight
for all clients, which will result in closer proximity between
✓k and �✓, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the bE bDk

(✓⇤k) can
be considered as a constant, so G bDk

(✓) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is bD = { bDi}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(✓ri , bDi, E)

that indicates the model ✓ri is trained on bDi dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
✓r first. Formally, the following generalization gap will be
computed.

G bDi
(✓r) = bE bDi

(✓r)� bE bDi
(✓r�10

i), i = 1, 2, . . . ,M.

Then, after the local training by Alg(✓ri , bDi, E), we send
both G bDi

(✓r) and the updated local model parameter ✓r0i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model ✓ = ✓0, M clients bD =
{ bD1, bD2, · · · , bDM}, the initial weights a0 =
(1
M , 1

M , · · · , 1
M). (Hyperparameters: local epoch E,

total communication round R and step size d for GA.)
Output: Global model ✓R.

1: Server: initialize the local models ✓0i by the global
model: ✓0i = ✓0.

2: for all r in 0 · · ·R� 1 do
3: Client:

Compute G bDi
(✓r) for ✓r on each client.

Training the local model ✓ri on domain bDi:
✓r0i = Alg(✓ri , bDi, E).

Get the empirical loss on local model bE bDi
(✓r0i).

4: Server:
Update ar by ar�1 and {G bDi

(✓r)}Mi=1:

ar = GA(ar�1, {G bDi
(✓r)}Mi=1, d

r).

Aggregate ✓r+1
i with ar to get a new global model:

✓r+1 =
PM

i=1 a
r
i · ✓r0i .

5: Broadcast ✓r+1 to all clients ✓r+1
i = ✓r+1.

6: end for

{G bDi
(✓r)}Mi=1 and the previous weights ar�1, we compute

ar by the following equations.

ar0i =
(G bDi

(✓r)� µ) ⇤ dr

maxj(G bDj
(✓r)� µ)

+ar�1
i , ari =

ar0iPM
i=1 a

r0
i

, (3)

where µ = 1
M

PM
i=1 G bDi

(✓r) and dr = (1 � r/R) ⇤ d.
d 2 (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for �
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar0i
greater than 0 and restrain the sum of ar0i to 1. Then, the
global model ✓r+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
✓r+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-

43957

objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG
In Eq. (2), a and ✓i cannot be simultaneously opti-

mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap G bDi

(✓)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters ✓i by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
G bDi

(✓) is shown below. Formally, given a specific domain
k, the relationship between the global parameter ✓ and the
local model parameter ✓k can be expressed as follows,

✓ = ✓k +�✓, where �✓ = (1� ak)✓k +
P

i 6=k ai✓i.

Let us consider �✓ as a perturbation on ✓k. For bE bDk
(✓),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i 6=k and the degree of perturbation �✓ will
decline. In this case, ✓ is closer to the local optimal ✓k, mak-
ing the loss bE bDk

(✓) in domain bDk decrease. And in the next
round, the new global model ✓ is used as the initial weight
for all clients, which will result in closer proximity between
✓k and �✓, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the bE bDk

(✓⇤k) can
be considered as a constant, so G bDk

(✓) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is bD = { bDi}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(✓ri , bDi, E)

that indicates the model ✓ri is trained on bDi dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
✓r first. Formally, the following generalization gap will be
computed.

G bDi
(✓r) = bE bDi

(✓r)� bE bDi
(✓r�10

i), i = 1, 2, . . . ,M.

Then, after the local training by Alg(✓ri , bDi, E), we send
both G bDi

(✓r) and the updated local model parameter ✓r0i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model ✓ = ✓0, M clients bD =
{ bD1, bD2, · · · , bDM}, the initial weights a0 =
(1
M , 1

M , · · · , 1
M). (Hyperparameters: local epoch E,

total communication round R and step size d for GA.)
Output: Global model ✓R.

1: Server: initialize the local models ✓0i by the global
model: ✓0i = ✓0.

2: for all r in 0 · · ·R� 1 do
3: Client:

Compute G bDi
(✓r) for ✓r on each client.

Training the local model ✓ri on domain bDi:
✓r0i = Alg(✓ri , bDi, E).

Get the empirical loss on local model bE bDi
(✓r0i).

4: Server:
Update ar by ar�1 and {G bDi

(✓r)}Mi=1:

ar = GA(ar�1, {G bDi
(✓r)}Mi=1, d

r).

Aggregate ✓r+1
i with ar to get a new global model:

✓r+1 =
PM

i=1 a
r
i · ✓r0i .

5: Broadcast ✓r+1 to all clients ✓r+1
i = ✓r+1.

6: end for

{G bDi
(✓r)}Mi=1 and the previous weights ar�1, we compute

ar by the following equations.

ar0i =
(G bDi

(✓r)� µ) ⇤ dr

maxj(G bDj
(✓r)� µ)

+ar�1
i , ari =

ar0iPM
i=1 a

r0
i

, (3)

where µ = 1
M

PM
i=1 G bDi

(✓r) and dr = (1 � r/R) ⇤ d.
d 2 (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for �
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar0i
greater than 0 and restrain the sum of ar0i to 1. Then, the
global model ✓r+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
✓r+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-

43957

Client-side:
calculate the generalization gap

Server-side:
adjust the aggregation weights 𝐚𝐢𝐫 by 𝐆#𝐃𝐢(𝛉

𝐫)

Introduction Motivation Method Experimental Results Conclusion 10

Table 1. Results on three benchmarks (PACS, OfficeHome, TerraInc) under the FedDG setting. The results on each dataset are the
average of four leave-one-domain-out cases. “+GA” represents aggregation with our generalization weight ai.

Method PACS OfficeHome TerraInc
P A C S Avg. P A C R Avg. L38 L100 L43 L46 Avg.

Avg.

ARFL 92.10 76.25 75.79 80.47 81.15 73.89 56.98 53.18 73.16 64.30 56.83 40.04 41.58 30.81 42.32 62.59
FedAvg 92.77 77.29 77.97 81.03 82.26 72.72 57.60 52.28 73.88 64.12 52.66 40.56 41.56 36.91 42.92 63.10

+GA 93.97 81.28 76.73 82.57 83.64 73.39 58.57 54.39 74.73 65.27 54.36 41.66 48.68 40.43 46.28 65.06
FedCSA 91.88 77.00 76.79 80.84 81.63 72.96 56.08 52.51 72.79 63.58 54.33 41.08 41.52 33.51 42.61 62.61

+GA 94.12 79.30 77.69 81.62 83.18 72.96 57.58 53.99 73.98 64.63 54.91 44.74 46.90 38.53 46.27 64.69
FedNova 94.03 79.93 76.39 79.26 82.40 73.72 58.81 49.89 73.33 63.94 56.80 38.96 42.49 31.99 42.56 62.97

+GA 94.13 81.30 77.73 80.30 83.37 72.58 57.89 54.25 73.86 64.65 55.15 41.55 47.05 35.25 44.75 64.26
FedProx 93.15 77.72 77.73 80.77 82.34 73.37 58.76 52.67 73.88 64.67 54.00 39.84 43.90 38.31 44.01 63.67

+GA 94.91 80.24 77.20 81.48 83.46 73.81 58.28 54.03 74.80 65.23 54.03 40.93 49.28 38.84 45.77 64.82
FedSAM 91.20 74.45 77.77 83.35 81.69 73.58 55.34 54.75 73.74 64.35 57.21 38.24 40.21 31.24 41.73 62.59

+GA 92.87 77.76 77.86 85.16 83.41 73.29 55.21 56.82 74.49 64.95 60.04 38.95 48.39 37.43 46.20 64.85
HarmoFL 90.99 74.51 77.43 81.73 81.16 73.89 57.44 53.42 74.95 64.93 60.04 38.57 39.21 33.87 42.92 63.01

+GA 93.83 77.39 77.07 82.51 82.70 73.76 58.14 54.44 75.74 65.53 61.81 38.53 46.65 37.96 46.24 64.82
Scaffold 92.50 78.09 77.23 80.67 82.12 72.16 59.00 52.78 73.22 64.29 54.10 37.28 45.09 38.38 43.71 63.37

+GA 94.79 80.14 76.91 82.12 83.49 73.45 57.93 54.42 74.62 65.10 55.40 39.74 50.08 39.68 46.22 64.94
AM 93.29 80.86 77.62 81.05 83.20 73.24 58.76 51.87 73.84 64.42 57.36 37.43 45.00 33.60 43.35 63.66

+GA 94.03 83.19 76.85 82.93 84.25 73.67 58.80 54.28 74.72 65.37 56.30 40.55 49.42 38.08 46.08 65.23
RSC 92.67 77.98 77.80 82.90 82.91 73.26 57.44 50.31 73.42 63.61 54.25 41.61 43.94 35.55 43.84 63.45

+GA 93.79 81.69 77.23 82.75 83.87 72.35 58.55 51.42 75.01 64.33 54.87 43.93 50.08 39.04 46.98 65.06

method is set to 0.05 by default. All the reported results are
averaged over three runs.

Table 2. Results on the DomainNet benchmarks under the
FedDG setting. “+GA” represents using weight ai by our GA.

Method C I P Q R S Avg.
ARFL 69.93 31.32 60.68 57.45 67.76 60.62 57.96
FedAvg 67.92 32.77 60.27 52.90 68.72 61.15 57.29

+GA 71.86 34.40 63.25 57.50 67.26 67.15 60.24
FedCSA 68.94 33.67 61.66 58.25 67.25 61.15 58.49

+GA 70.34 33.71 64.22 56.85 66.06 67.33 59.72
FedNova 68.45 32.95 61.70 59.05 67.21 61.57 58.49

+GA 73.29 34.09 64.38 57.05 68.08 65.25 60.36
FedProx 68.55 32.12 60.79 55.63 68.17 61.20 57.75

+GA 69.39 33.26 63.25 57.15 67.50 65.79 59.39
FedSAM 66.47 34.97 56.90 51.11 66.28 55.82 55.26

+GA 72.62 36.30 64.62 57.75 69.35 65.43 61.01
HarmoFL 71.39 34.70 61.23 57.50 67.01 56.77 58.10

+GA 72.81 35.77 63.73 59.30 68.08 64.35 60.67
Scaffold 68.04 33.20 60.60 54.39 67.32 60.88 57.41

+GA 71.67 34.93 62.20 57.70 67.46 66.97 60.16
AM 71.91 32.54 63.70 56.87 67.80 69.42 60.37

+GA 74.33 35.31 64.54 58.55 68.61 72.02 62.23
RSC 70.96 34.25 60.31 55.20 66.91 63.84 58.58

+GA 71.96 35.62 62.52 56.95 67.13 64.98 59.86

4.2. Main results
Compared methods We select several representative
methods in the area of DG and FL for comparison. The
baseline method is FedAvg [32], which acts as a strong
baseline under the FedDG paradigm. As for the existing

methods from the domain generalization perspective, we
choose two methods. A regularization-based DG method
called RSC [16] that can be migrated to FedDG and a
powerful Fourier-based augmentation method named Am-
plitude Mix (AM). AM is widely used in many DG meth-
ods [43,47,51] and the main component of FedDG-ELCFS
proposed by [30] (We remove the loss designed for the
segmentation task). As for the federated learning meth-
ods designed for data heterogeneity, we select several ap-
proaches. Four methods, FedProx [27], HarmoFL [17],
Scaffold [18] and FedSAM [36] which are all initially pro-
posed to solve the heterogeneous issue across clients, and
three re-weight methods: ARFL [26] is also a dynamic
re-weighting method that focuses on the convergence un-
der corrupted data sources and is unable to combine with
our GA; FedCSA [31] aims to calibrate the class-imbalance
problem among clients; FedNova [44] tries to correct the
objective inconsistency caused by the different local update
steps for better convergence.

Comparison with existing methods We report the over-
all performance on four FedDG benchmarks in Table 1 and
Table 2. According to the comparison, our GA achieves sig-
nificant and consistent improvements when combined with
different algorithms on different datasets. We observe that
when equipped with our GA method, the domain gener-
alization performances could be largely improved in most
cases, regardless of the type of algorithms on four bench-
marks in Table 1 and Table 2. These results demonstrate the
superiority and generalizability of our GA method, com-

63959

GA achieves consistent improvements on top of SOTA
methods on four benchmarks!

FL SOTA

baseline

DG SOTA

Introduction Motivation Method Experimental Results Conclusion 11

GA achieves consistent improvements on top
of SOTA methods on four benchmarks!

Table 1. Results on three benchmarks (PACS, OfficeHome, TerraInc) under the FedDG setting. The results on each dataset are the
average of four leave-one-domain-out cases. “+GA” represents aggregation with our generalization weight ai.

Method PACS OfficeHome TerraInc
P A C S Avg. P A C R Avg. L38 L100 L43 L46 Avg.

Avg.

ARFL 92.10 76.25 75.79 80.47 81.15 73.89 56.98 53.18 73.16 64.30 56.83 40.04 41.58 30.81 42.32 62.59
FedAvg 92.77 77.29 77.97 81.03 82.26 72.72 57.60 52.28 73.88 64.12 52.66 40.56 41.56 36.91 42.92 63.10

+GA 93.97 81.28 76.73 82.57 83.64 73.39 58.57 54.39 74.73 65.27 54.36 41.66 48.68 40.43 46.28 65.06
FedCSA 91.88 77.00 76.79 80.84 81.63 72.96 56.08 52.51 72.79 63.58 54.33 41.08 41.52 33.51 42.61 62.61

+GA 94.12 79.30 77.69 81.62 83.18 72.96 57.58 53.99 73.98 64.63 54.91 44.74 46.90 38.53 46.27 64.69
FedNova 94.03 79.93 76.39 79.26 82.40 73.72 58.81 49.89 73.33 63.94 56.80 38.96 42.49 31.99 42.56 62.97

+GA 94.13 81.30 77.73 80.30 83.37 72.58 57.89 54.25 73.86 64.65 55.15 41.55 47.05 35.25 44.75 64.26
FedProx 93.15 77.72 77.73 80.77 82.34 73.37 58.76 52.67 73.88 64.67 54.00 39.84 43.90 38.31 44.01 63.67

+GA 94.91 80.24 77.20 81.48 83.46 73.81 58.28 54.03 74.80 65.23 54.03 40.93 49.28 38.84 45.77 64.82
FedSAM 91.20 74.45 77.77 83.35 81.69 73.58 55.34 54.75 73.74 64.35 57.21 38.24 40.21 31.24 41.73 62.59

+GA 92.87 77.76 77.86 85.16 83.41 73.29 55.21 56.82 74.49 64.95 60.04 38.95 48.39 37.43 46.20 64.85
HarmoFL 90.99 74.51 77.43 81.73 81.16 73.89 57.44 53.42 74.95 64.93 60.04 38.57 39.21 33.87 42.92 63.01

+GA 93.83 77.39 77.07 82.51 82.70 73.76 58.14 54.44 75.74 65.53 61.81 38.53 46.65 37.96 46.24 64.82
Scaffold 92.50 78.09 77.23 80.67 82.12 72.16 59.00 52.78 73.22 64.29 54.10 37.28 45.09 38.38 43.71 63.37

+GA 94.79 80.14 76.91 82.12 83.49 73.45 57.93 54.42 74.62 65.10 55.40 39.74 50.08 39.68 46.22 64.94
AM 93.29 80.86 77.62 81.05 83.20 73.24 58.76 51.87 73.84 64.42 57.36 37.43 45.00 33.60 43.35 63.66

+GA 94.03 83.19 76.85 82.93 84.25 73.67 58.80 54.28 74.72 65.37 56.30 40.55 49.42 38.08 46.08 65.23
RSC 92.67 77.98 77.80 82.90 82.91 73.26 57.44 50.31 73.42 63.61 54.25 41.61 43.94 35.55 43.84 63.45

+GA 93.79 81.69 77.23 82.75 83.87 72.35 58.55 51.42 75.01 64.33 54.87 43.93 50.08 39.04 46.98 65.06

method is set to 0.05 by default. All the reported results are
averaged over three runs.

Table 2. Results on the DomainNet benchmarks under the
FedDG setting. “+GA” represents using weight ai by our GA.

Method C I P Q R S Avg.
ARFL 69.93 31.32 60.68 57.45 67.76 60.62 57.96
FedAvg 67.92 32.77 60.27 52.90 68.72 61.15 57.29

+GA 71.86 34.40 63.25 57.50 67.26 67.15 60.24
FedCSA 68.94 33.67 61.66 58.25 67.25 61.15 58.49

+GA 70.34 33.71 64.22 56.85 66.06 67.33 59.72
FedNova 68.45 32.95 61.70 59.05 67.21 61.57 58.49

+GA 73.29 34.09 64.38 57.05 68.08 65.25 60.36
FedProx 68.55 32.12 60.79 55.63 68.17 61.20 57.75

+GA 69.39 33.26 63.25 57.15 67.50 65.79 59.39
FedSAM 66.47 34.97 56.90 51.11 66.28 55.82 55.26

+GA 72.62 36.30 64.62 57.75 69.35 65.43 61.01
HarmoFL 71.39 34.70 61.23 57.50 67.01 56.77 58.10

+GA 72.81 35.77 63.73 59.30 68.08 64.35 60.67
Scaffold 68.04 33.20 60.60 54.39 67.32 60.88 57.41

+GA 71.67 34.93 62.20 57.70 67.46 66.97 60.16
AM 71.91 32.54 63.70 56.87 67.80 69.42 60.37

+GA 74.33 35.31 64.54 58.55 68.61 72.02 62.23
RSC 70.96 34.25 60.31 55.20 66.91 63.84 58.58

+GA 71.96 35.62 62.52 56.95 67.13 64.98 59.86

4.2. Main results
Compared methods We select several representative
methods in the area of DG and FL for comparison. The
baseline method is FedAvg [32], which acts as a strong
baseline under the FedDG paradigm. As for the existing

methods from the domain generalization perspective, we
choose two methods. A regularization-based DG method
called RSC [16] that can be migrated to FedDG and a
powerful Fourier-based augmentation method named Am-
plitude Mix (AM). AM is widely used in many DG meth-
ods [43,47,51] and the main component of FedDG-ELCFS
proposed by [30] (We remove the loss designed for the
segmentation task). As for the federated learning meth-
ods designed for data heterogeneity, we select several ap-
proaches. Four methods, FedProx [27], HarmoFL [17],
Scaffold [18] and FedSAM [36] which are all initially pro-
posed to solve the heterogeneous issue across clients, and
three re-weight methods: ARFL [26] is also a dynamic
re-weighting method that focuses on the convergence un-
der corrupted data sources and is unable to combine with
our GA; FedCSA [31] aims to calibrate the class-imbalance
problem among clients; FedNova [44] tries to correct the
objective inconsistency caused by the different local update
steps for better convergence.

Comparison with existing methods We report the over-
all performance on four FedDG benchmarks in Table 1 and
Table 2. According to the comparison, our GA achieves sig-
nificant and consistent improvements when combined with
different algorithms on different datasets. We observe that
when equipped with our GA method, the domain gener-
alization performances could be largely improved in most
cases, regardless of the type of algorithms on four bench-
marks in Table 1 and Table 2. These results demonstrate the
superiority and generalizability of our GA method, com-

63959

better adapt the trained global modal to the new client with
domain shift. FedDG and TTDA complement each other,
and the more generalized global model from FedDG has
better adaptive effects on TTDA. Given the orthogonality of
FedDG and TTDA, we can apply GA on all TTDA methods.
In Table 2, we implement two well-known TTDA meth-
ods: Domain Specific Batch Normalization (DSBN) [3] and
Test-time adaptation by entropy minimization (Tent) [7].
From Table 2, we can see GA can also improve the per-
formance with TTDA.

Table 2. Combination with two TTDA methods.

Method
PACS OfficeHome

P A C S Avg, P A C R Avg.
DSBN 96.26 82.23 80.99 77.50 84.25 73.34 56.49 53.64 73.03 64.13

+GA 96.56 83.18 81.21 80.11 85.26 72.91 57.50 54.99 73.85 64.81
Tent 96.92 85.94 83.06 91.39 86.83 74.63 57.95 56.48 74.67 65.92
+GA 97.16 86.77 83.98 83.28 87.80 74.53 59.79 56.61 75.36 66.57

References
[1] Shai Ben-David, John Blitzer, Koby Crammer, Alex

Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains.
Machine learning, 79(1):151–175, 2010. 1

[2] Debora Caldarola, Barbara Caputo, and Marco Cic-
cone. Improving generalization in federated learning by
seeking flat minima. In Computer Vision–ECCV 2022:

17th European Conference, Tel Aviv, Israel, October

23–27, 2022, Proceedings, Part XXIII, pages 654–672.
Springer, 2022. 3

[3] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha
Kwak, and Bohyung Han. Domain-specific batch nor-
malization for unsupervised domain adaptation. In
CVPR, pages 7354–7362, 2019. 4

[4] Junming Chen, Meirui Jiang, Qi Dou, and Qifeng Chen.
Federated domain generalization for image recognition
via cross-client style transfer. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Com-

puter Vision, pages 361–370, 2023. 3
[5] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and

Pheng-Ann Heng. Feddg: Federated domain gener-
alization on medical image segmentation via episodic
learning in continuous frequency space. CVPR, 2021.
3

[6] A. Tuan Nguyen, Philip Torr, and Ser-Nam Lim. Fedsr:
A simple and effective domain generalization method
for federated learning. NeurIPS 36 (NeurIPS), 2022. 3

[7] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno
Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In ICLR, 2021. 4

4

GA also shows improvements on top of test-
time adaptation methods.

for i in range(M):
new_domain_weights[i] =

domain_weights[i] +
gen_gaps[i] / max(gen_gaps) *
d

normalize the new domain weights
for i in range(M):

new_domain_weights[i] /=
sum(new_domain_weights)

return new_domain_weights

def main():
initialize the datasets for each

source domain
datasets = get_data()

initialize the parameters of
global model

global_model = get_model()

initialize the local models
local_models = [get_model() for i in

range(M)]
broadcast(global_model, local_models)

initialize the domain weights
domain_weights = [1/M for i in

range(M)]

federated learning
for r in range(R):

for i in range(M): # client
evaluate on global model
loss_global[r][i] =

client_eval(global_model,
datasets[i][’val’])

generalization gap on global
model theta_r

gen_gaps[r][i] =
loss_global[r][i] -
loss_local[r-1][i]

local training on theta_i_r
local_models[i] =

client_train(local_models[i],
datasets[i][’train’],
local_epochs, t)

loss_local[r][i] =
client_eval(local_models[i],
datasets[i][’val’])

Generalization Adjustment
domain_weights = GA(gen_gaps[r],

domain_weights, d*(R-r)/R)

parameter aggregation

global_model =
FedAvg(local_models,
domain_weights)

broadcast(global_model,
local_models)

if __name__ == ’__main__’:
main()

C. More Experimental Results
C.1. Compared with more FedDG methods under

several settings
FedDG is a cross-silo FL problem that each client con-

tains a large scale of data with unique data distribution, and
it aims to solve the out-of-domain generalization problem
in FL. We follow the FedDG setting from ELCFS [5] that
each client corresponds to one domain, which is also the
same as FedSR [6], and CCST [4]. And our GA is contem-
poraneous with FedSR [6], FedASAM+SWA [2] (namely
FedASAM* in Table 1), and CCST [4], which are pub-
lished and open-sourced after the submission deadline of
CVPR2023. Therefore, we add comparisons with these ad-
vanced SOTA FedDG methods in Table 1. GA can still im-
prove the performance on top of them. However, we do
appreciate the suggestion of reviewers that one domain can
correspond to multiple clients, and implement such exper-
iments in Table 1. In experiments, each domain of data
is partitioned into 10 clients, and we randomly select 10
clients to participate in the training per round. From the re-
sults, we can find that our GA can still provide gain for the
large-scale FL.

Table 1. Results with more clients & with more advanced SOTAs.

Dataset
more clients suggested SOTAs

FedAvg Best1 ELCFS FedSR FedASAM* CCST
PACS 80.33 81.62 84.07 83.70 82.04 83.48
with GA 81.99 82.72 84.88 84.66 83.57 84.35

OfficeHome 63.38 64.08 62.88 64.29 64.32 64.25
with GA 64.40 65.04 64.60 64.65 64.80 65.42

C.2. Comparison with TTDA.
The application scenarios of Federated Domain Gener-

alization (FedDG) and test time domain adaptation (TTDA)
are similar, which both focus on the performance on the un-
seen target clients with domain shifts. Generally speaking,
despite similarity, FedDG and TTDA are at different stages.
FedDG aims to improve the out-of-domain generalization
during the training of global model, while TTDA aims to

1Best performance of other baselines in the Table 1 of submitted manuscript to
save space (ELCFS for PACS and HarmoFL for OfficeHome).

3

GA also shows improvements with SOTA
FedDG methods.

DomainNet

Introduction Motivation Method Experimental Results Conclusion 12

GA can effectively reduce the variance of the generalization gap!

Introduction Motivation Method Experimental Results Conclusion 13

GA will lead the global model to converge on more flatness
minima of unseen domain’s loss surface.

14

Thanks for your watching!

Github repo

