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Understanding hand-object interaction

e Estimating 3D hand and object pose from a single image
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Hands and objects are often self-occluded during interactions

e Challenge:
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Related Work

Separate Encoders One Encoder and Feature Fusion

Competition for hand and object feature learning,

Lacks Modeling Interaction and only-enhance object features

Hasson et al., 2019 Liu et al., 2021



Proposed Method

RolAlign .
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Proposed Method
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Feature Extraction Backbone Interaction Modules Two separate decoders



1.Feature Extraction Backbone

e single stream backbone -> treats the hand and object both as
foreground, competitive in feature learning

Image

Original
ResNet-30

e double stream backbone -> large number of parameters, the different feature
spaces between backbones



1.Feature Extraction Backbone

e Our backbone keeps the structure of the stage-0, stage-1, and
stage-4 layers of the ResNet-50 model unchanged, but adopts
independent stage-2 and stage-3 layers for the hand and object.

e The feature maps output by the stage-1 layers are fed into the two
sets of stage-2 and stage-3 layers.

e The two sets of feature maps output by the stage-3 layers are fed

into the same stage-4 layers.

e Finally, we adopt Feature Pyramid Network (FPN) to combine the
features in different scales.



1.Feature Extraction Backbone

e independent stage-2 and stage-3 layers -> regard the hand and

object respectively as the sole foreground target

i
1 | 1
1 .__—ant- )
E_,: N— : e shared stage-4 layers -> the hand and object features are forced
1 ‘oY |
| T ' to be in similar feature spaces
A I ot T
p SR SR A S S TSR
E :, - y Image
I 1 :
G ey
| :
it = T
: : f : Our hand
1 ! ez = - branch
DO et e
Our object
branch
Original

ResNet-50




2.lnteraction Modules
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e hand-> non-rigid, flexible, high degree of
freedom

e We use the ROIAlign to obtain F" and F°"from P" and Pe,
according to the hand bounding box.

e And concatenating them along the channel dimension to
get FH,

e Finally, We feed F" into the Object-to-Hand Enhancement
module.



2.lnteraction Modules
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e object-> rigid, and less flexible

e We use the ROIAlign to obtain F© from P°, according to the
object bounding box, and obtain F"° from Ph, according
to the overlapped area between the hand and
object bounding boxes.

e Finally, We feed F° and F"° into the Hand-to-Object
Enhancement module.



3.Two separate decoders

e Hand decoder output 2D joints, 3D mesh

Hand
Decoder
_n 3D hand mesh parameterized by MANO model

Hand pose

e Object decoder output 2D control points

Object
Decoder

Object 6D pose

21 control points pre-defined on object mesh 6D object pose
computed by PNP algorithm



Experiments

Methods  [Joint| Mesh] cleanser? bottlet can? average? nteraction modules Methods  [Joint] Mesh]| cleanser? bottleT can? average?
_Single-Stream | 104 103 80.1 553 46.2 60.5 , Single-Stream | 10.2  10.0  86.2  62.1 423 63.5
_Double-Stream 9.7 __ 96 822 74.1 494 686 Double-Stream) 9.5 94 912 733 468 704
[""b_ﬁr_s ______ 98 9.7 84.1 70.3 48.2 67.5 : :_____(_)_u_r:x: _______ 89 87 81._4:____8_7_._5__5_2:%___7_3_._3_‘:

* The double-stream backbone works better than the single-stream without adding interaction modules,
while our approach achieves close to the double-stream effect by adding only a small number of
parameters.

« The performance gain of the double-stream backbone after adopting the interaction modules are quite
small, while our approach has a larger improvement.



Qualitative examples:

o &

o &

| &

S

W -

. S

Image

Front View Other View

Ours

Front view Other View

Liu et al.

Front View Other View

HandOccNet



Qualitative examples:
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Qualitative examples:
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Thanks for listening

code:https://github.com/lzfff12/HFL-Net



