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Existing 3D Face Modeling Methods 1 BiRiEE

Graphics-renderer-based method

Our method recovers more high-
quality and photo-realistic 3d face

LAP [1] 3DFR [2]
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Existing 3D Face Modeling Methods 1 BiRiEE

Neural Rendering Method, e.g., NeRF-based Generative models

Reconstruction Deformation

EG3D [3] + PTI [4]

Ours

Our method is more robust to challenging conditions, and is able to
perform disentangled face deformation in a controllable way.
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Motivation & Solution o1 e

Neural rendering methods are sensitive to large pose, extreme appearance or shadow

Distortion

We use photo collection to provide consistent multi-image prior for robust 3D face modeling



Summary of our approach

Neural proto-face field learning

1.

Aggregating a 3D-consistent

face from a

shape photo

collection.

Disentangling the deformation

and identity of face prototype.

of ERiE

Neural proto-face field fitting

1.

Warming up the neural proto-
face field based on the photo
collection to avoid overfitting.

Fitting one target image to

recover personalized details.
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The consistent shape cues with lower uncertainty are maintained after aggregation
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Ablation study: the deformation modeling  4gnse
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Ablation study: photo collection & fitting  gwmse
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Ablation study: uncertainty modeling & losses 4 umnum

The uncertainty modeling significantly
improves the identity preservation

The appearance consistency loss recovers
better texture details

Target Ours w/o L, Target Ours w/o L,



Comparison with state-of-the-art methods g

EG3D + PTI PhyDIR HeadNeRF

Target EG3D + PTI



EG3D + PTI HeadNeRF



More results on challenging conditions 1 e




Thanks for watching our presentation
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