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Problem

Existing SGG methods fail to capture compact and distinctive relation representations.

* Large intra-class variation: arises from diverse appearance of entities and various

subject-object combinations.

* Severe inter-class similarity: originates from similar-looking interactions shared among

different relation categories.
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Fig. 1. The illustration of relation representations with large intra-class variation and severe inter-class similarity.



Motivation

Category-inherent Semantics is more reliable than visual appearance.

Intra-class variation: Entities/predicates from each class share the same semantics,
captured from class labels.

Inter-class similarity: Class-inherent semantics 1s discriminative for visual-similar
instances from different categories.
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Method

Prototype-based Embedding Network (PE-Net): 4
* Prototype-based Modeling:

man

Models entities/predicates with prototype-
aligned representations in semantic space.

* Prototype-guided Entity-Predicate Matching:

Match entity pairs to predicates in semantic
embedding space for relation recognition.

* Prototype-guided Learning:

Help PE-Net efficiently learn entity-
predicate matching.

* Prototype Regularization:

Relieve ambiguous entity-predicate matching @ feature fusion 7% prototype |<>f pushaway <> matching
caused by predicate’s semantic overlap.

Fig. 2. The main process of our proposed PE-Net.



Method

Prototype-based Embedding Network (PE-Net):

* Prototype-based Modeling:
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Fig. 4. Prototype-based space Modeling.

where h(-) is visual-to-semantic function.



Method

Prototype-based Embedding Network (PE-Net):
. . . . Subject Object
* Prototype-guided Entity-Predicate Matching:

[ man ] [ pizza E‘
F(s,0) > p=Wyt, +u,, (6) ‘é & :

F(s,0) =ReLU(s +0) — (s — 0)2 1] , (7 Predicate F(s,0)

where F (s, 0) denotes the feature fusion function.

Equivalent transformation:

F(s,0) —u, > W,t 8)
(5,0) ~up peP’ . holding
where F(s,0) —u 1s defined as relation e
(_ ) p . @ fusion <—» push away
representation 7, which should be matched to its A prototype i
. . r <4— matchin
corresponding  predicate  prototype = Wpt,,. \ P 2
(represented as c¢ in the following). Fig. 5. Prototype-guided Entity-Predicate Matching.

[1] Zhang, Yan, et al. "Learning to count objects in natural images for visual question answering." arXiv preprint:1802.05766 (2018).



Method

Prototype-based Embedding Network (PE-Net):

 Prototype-guided Learning: Subject Object
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Cosine distance: Increasing the cosine similarity [ &] [p E

between the relation representation 7, and its
corresponding prototype cg,

F(s,0)

Predicate
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Fuclidean distance: Increasing the Euclidean
distance between the relation representation r, and

its corresponding prototype c;, \____holding eating  J
4 . h
g]. =|| r — C]- ”%; (10) @ fusion <+—» push away
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Fig. 6. Prototype-guided Learning.



Method

Prototype-based Embedding Network (PE-Net):

. . Subject Object
Prototype Regularization:

Cosine distance /Euclidean distance : Alleviates [ man é] [Pilla E

ambiguous matching caused by semantic overleap

between predicates by enlarging distinction between F(s,0)
- Predicate ’

predicate prototypes c;.
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res, = argmax(q; | q; = (r,c;)/T). (16) Fig. 7. Prototype Regularization.
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Experiment

Compared with State of the Arts:

Model PredCls SGCls SGDet

R@50/100 mR@50/100 M@50/100 | R@50/100 mR@50/100 M@50/100 | R@50/100 mR@50/100 M@50/100
Motifs® [25, 30] 653/67.2 149/16.3 40.1/418 | 38.9/39.8 8.3/8.8 23.6/24.3 | 32.1/36.8 6.6/7.9 194/22.4
VCTree® [25,27] 655/674 16.7/17.9 41.1/427 | 40.3/41.6 79/8.3 24.1/25.0 | 31.9/36.0 64/73 19.2/21.7
GR-CNN*[11,33] | 654/67.2 16.4/17.2 4097422 | 37.0/38.5 9.0/9.5 23.0/24.0 | 29.7/328 58/6.6 17.8/719.7
KERN™ [1,11] 65.8/67.6 17.7/19.2 41.8/434 | 36.7/37.4 94/100 23.1/23.7 | 27.1/29.8 64/73 16.8/18.6
VTransE® [25,10] 65.7/67.6 14.7/15.8 40.2/41.7 | 38.6/394 8.2/8.7 23.4/24.1 | 29.7/34.3 50/6.1 17.4720.2
R-CAGCN [ 7] 66.6 /68.3 18.3/19.9 425/44.1 | 38.3/39.0 10.2/11.1 243/25.1 | 28.1/31.3 79/8.8 18.0/20.1
GPS-Net* [ 11, 15] 652/67.1 15.2/16.6 40.2/419 | 37.8/39.2 8.5/9.1 23.2/242 | 31.3/359 6.7/8.6 19.0/22.3

RU-Net [ 7] 67.7/69.6 -/24.2 -/46.9 42.4/43.3 -/146 -/29.0 32.9/37.5 -/10.8 -124.2
PE-Net(P) 68.2/70.1 23.1/254 45.7/478 | 41.3/42.3 13.1/14.8 27.2/28.6 | 32.4/36.9 8.9/11.0 20.7/24.0
PE-Net 649/67.2 31.5/33.8 48.2/50.5 | 39.4/40.7 17.8/18.9 28.6/29.8 | 30.7/35.2 124/ 14.5 21.6/24.9
Motifs-TDE [ 6] 462/51.4 25.5/29.1 359/403 | 27.7/29.9 13.1/14.9 2047224 | 16.9/20.3 8.2/98 12.6 /15.1
Motifs-CogTree [*4] | 35.6/36.8 26.4/29.0 31.0/329 | 21.6/22.2 149/ 16.1 18.3/19.2 | 20.0/22.1 104/ 11.8 15.2/17.0
Motifs-BPL-SA [5] | 50.7/52.5 29.7/31.7 40.2/42.1 | 30.1/31.0 16.5/17.5 23.3/24.3 | 23.0/269 135/ 15.6 18.3/21.3
Motifs-NICE [10)] 55.1/57.2 299/323 42.5/448 | 33.1/34.0 16.6/17.9 249/26.0 | 27.8/31.8 122/ 14.4 20.0/23.1
Motifs-PPDL [ ! ] 472/47.6 32.2/33.3 30.7/405 | 28.4/29.3 17.5/18.2 23.0/23.8 | 21.2/239 114/13.5 16.3/18.7
Motifs-GCL [?] 427/444  36.1/38.2 394/413 | 26.1/27.1 20.8/21.8 23.5/245 | 18.4/220 16.8/19.3 17.6/20.7
Motifs-Reweight [2] | 53.2/55.5 33.7/36.1 43.5/458 | 32.1/334 17.7719.1 249/26.3 | 25.1/28.2 133/15.4 19.2/21.8
PE-Net-Reweight | 59.0/61.4  38.8/40.7 48.9/51.1 | 36.1/37.3 22.2/235 29.2/30.4 | 26.5/30.9 16.7/ 18.8 21.6/249

Tab. 1. Performance comparison with the state-of-the-art SGG methods on VG dataset. PE-Net(P) refers to the PE-Net only
trained with PL. PE-Net indicates PE-Net trained with both PL and PR.



Experiment

Measuring Representation Modeling of PE-Net:

* Calculation of IV and IIVR: #
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Intra-class to Inter-class Variance (IIV): measure the
inter-class distinctiveness of the representations.
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Motifs [26, 38] 9.73 1.93 1.41 2.72 Pl <
VCTree [26,28] 8.31 2.11 1.50 2.78 .(.‘ oo § g
Transformer [26,30] | 9.08 2.05 1.44 2.76 R \f'._z:« ' 5.2’ "
G-RCNN[12,35] | 876 1.99 1.46 281 e e e
GPS-Net [12, 16] 9.36 2.07 1.53 2.69 5 e :
PE-Net 074 0.24 1.06 167 (c) Relations (Motifs) (d) Relations (PE-Net)

Fig. 8. The comparison of t-SNE visualization results

Tab. 2. Quantitative results on representation quality. on entity and predicate feature distributions.




Thanks

If you have any questions, please contact me at :

xinyulyu68@gmail.com
Codes: https://github.com/VL-Group/PENET




