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Overview

» Problems:
The robustness of deep models on the potential data distribution shift

» Motivation:
Sparse representation can remove redundancy in signals and works well in image restoration

» Method:
Vector quantization for quality-independent feature representation learning.

» Results:
Better recognition performance on several benchmark datasets.



Overview

» The overall architecture of our proposed method:
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clean fog blur noise
Deep models are typically trained on high-quality images but have poor
recognition accuracy for low-quality ones

Visualization of CAM Class Activation Maps for Deep Models on Clean and Defocus-Blur Images
Deep features extracted from low-quality images are interfered, affecting
the recognition
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O Existing recognition methods for degraded images
» Fine-tuning the models by mimicking real-world corruption
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» Based on image restoration:
> a): recognition after restoration, Haze removal (ECCV'18)
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O Vector quantization:
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» Quality-independent feature representation learning:
® Assuming that the quality-independent feature vector z of an image is a linear
combination of a series of features (atoms):
Z=Y,a;xe;=ag*ey+a,xe + - +a,*e, e €E, EeR™ (1)

® We have this sparse representation, which need to optimize a and E alternately:

Z=E=xa, c?zargmin“z—E*aIE+A*|Ia||0 (2)
(04
® Simplify a as an one-hot vector, we have:
z=e (3)
® \ector quantization as VQ-VAE:
12
qu = ||Sg(Z)—Z||2 (4)

Leme = |1z = sg@)]; (5)



Method

» Overall architecture of our proposed approach:
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» Training Loss:

Liotar = Lee + A % (qu + B * Leme) (6)
» Concatenate & self-attention:
f = Cat(z,2) (7)
T
feq = SOftmax (K fd_n) 2% (8)

> Experiments have shown that these skills can further improve performance.



Ablation Study

» The impact of codebook size n:

Size # Params | clean T | mCE |
n=1k | 4.0x10" | 76.1 45.7
n=10k | 58 x10" | 76.6 43.1
n =100k | 2.4 x10% | 76.6 42.9
> The choice of fusion mode:
CodeBook | Fusion mode | SA | cleanT | mCE |
- - - 73.1 53.7
v replace - 74.3 50.1
v add - 74.7 48.9
v concat - 76.2 45.7
v concat v 76.6 43.1
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Results

Method Backbone Clean | Known | UnKnown | mCE |
Vanilla [20)] 76.1 39.1 46.7 76.7
DDP [55] 72.1 48.2 50.7 62.78
URIE [47] ResNet50 73.8 53.1 56.5 53.7
QualNet [ 9] 75.4 61.1 58.1 50.3
Ours 76.6 65.6 60.2 43.1
Vanilla [ 0] 79.6 47.1 53.5 69.7
QualNet ['Y] | ResNeXt101 | 77.8 63.5 63.3 42.6
Ours 80.3 68.6 64.5 37.9
Method Clean | ImageNet-C | | ImageNet-A | ImageNet-R
Vanilla [20] 76.1 76.7 0.0 36.2

+ Ours 76.6 71.1 3.7 38.6
DeepAugment [’1] | 76.6 60.4 3.5 42.2

+ AugMix [27] 75.8 53.5 3.9 46.8

+ DAT [*5] 77.1 50.8 6.8 47.8
DAu+AM+Ours 77.4 48.7 5.9 49.3

The top-1 accuracy of each method on several benchmark datasets.
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The detailed top-1 accuracy results of the different methods for each corruption type in the

benchmark dataset ImageNet-C.
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Results
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Summary

» We propose to introduce vector quantization into the recognition model and improve the
models’ robustness on common corruptions.

» We concatenate the quantized feature vector with the original one and use the self-
attention module to enhance the quality-independent feature representation instead of
direct replacement in the standard vector quantization method.

» Extensive experimental results show that our method has achieved higher accuracy on
benchmark low-quality datasets than several current sota methods.
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Thank you for watching!

Code is available at:;
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