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fMRI - Functional magnetic resonance imaging

® Measures the small changes in

blood flow
blood-oxygen-level-dependent (BOLD) signal

® Proxy of brain activity

High spatial resolution

about 1 millions voxels in a brain

Low temporal resolution

TR =1-2s ——




Previous methods on fMRI decoding — first reconstruction work

Ground truth Ours

VAE-1like architecture

Encoder Architecture
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From voxels to pixels and back: Self-supervision in natural-image reconst
fMRI, NeurIPS 2019

Generated images are still blurry
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‘‘MRI on ImageNet’



Gap & Solution

Gap

e Non-linear implicit relationships within brain activities -> highly complex

Solution: Effective representation learner

¢ Individual differences are huge -> domain shift
Solution: Pre-train on a large-scale dataset with only fMRI

Pre-training dataset: Human connectome project on 1000+ subjects

e {fMRI, Image} pairs are limited -> few-shot learning

Solution: Self-supervised learning with pre-text task

Two stage design
A. Self-supervised representation learning on large-scale fMRI dataset

B. Strong image generation model




Characteristics of fMRI

e Spatial redundancy in fMRI due to regional homogeneity

e Number of voxels in VC is a lot less than images -> Difference in encoding/decoding
strategy
* Visual cortex: around 4000 voxels
* Images: 256*256*3 = 200k voxels

e Both generation consistency and flexibility are desired

« Consistency: For a fixed stimulus, we wish the generated images to have the same semantic meanings

* Flexibility: Due to individual differences, each person's response to this visual stimulus is different, and
we also hope that the model has a certain degree of variance and flexibility —




MinD-Vis Overview
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Stage A: Pre-train on fMRI only with SC-MBM
e Patchify
¢ Random mask
e Tokenize to large embedding

e Recover to masked patches

Conv+BN+Relu :
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Stage B: Integration with LDM through double conditioning

"

e Project the fMRI latent using latent dimension projectot

e fMRI latent -> cross-attention heads
e fMRI latent + time embedding -> residual blocks

e Latent diffusion model finetune

e Image latent -> Image



Stage A: Masked Brain Modelling (MBM)

Architecture: Masked Autoencoder with Vision Transformer backbone

Input fMRI

Sparse Coding

Token Embedding

cee

on HCP dataset (fMRI only)

Masking and embedding

Input: (# of subject, # of channel, # of voxels)

Steps:
1. Patchify -> (# of subject, # of patch, patch size),
record position of each patch

2. Token embedding -> (# of subject, # of patch,
embedding dimension), through a conv layer

3. Random masking -> e.g. make 75% of the
embedding zero

Output: Tokenized patches

Reconstruction

Input: Tokenized patches

Steps:

1. Token embedding -> ViT encoder -> Latent
representation

2. Latent representation -> ViT decoder ->
Reconstructed brain patches

3. Calculate loss: L2 (reconstructed patches,
original patches)

Output: whole brain voxels
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Masked Autoencoders
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Encoder: maps the input into Code (h) - lower-dimensional representation of the input
Decoder: maps the Code (h) followed by the encoder and reconstructs the input.

(He 2022, CVPR)



Result for Stage A

Ground-truth

Masked Ground-truth
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Note d
e The quality of the reconstructed brain voxels are not directly . .
related to the generation result

e We only use the latent representation in the next step




Sparse Coding with SC-MBM
Biological inspired design in MBM

Visual stimuli are sparsely encoded in the primary
visual cortex, increasing information transmission
efficiency and reducing redundancy

Sparse coding is an efficient way for vision encoding,
both in the brain and in computer vision

In SC-MBM, fMRI data are divided into patches

Each patch is encoded into a high-dimensional vector
space with a size much larger than the original data
space

e j.e. large embedding-to-patch-size ratio

e for fMRI: 1024/16 = 64

e forimage: 1024/(16*16*3) = 1.333 or 768/(14*14*3) = 1.3, depending
on the architecture

. active during context A
. active during context B

activity
during
context A

activity
during
context B




Stage B: Conditional Latent Diffusion Model

on GOD+BOLD5000 dataset (paired {fMRI, image})

1. Fine-tune on Latent Diffusion Model (LDM =y .
. del (LDM) (B) LDM Conditioning by fMRI latent
2. Use fMRI representation as condition
3. Double conditioning on both cross-attention X - -
heads and time embedding —— Forward Diffusion Process —
4. During fine-tuning, fMRI projector + the cross- ST mags 7 Add noise 77
attention heads + time embedding in U-Net are
optimized
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fMRI Data Collection

Dataset #1 Generic of Decoding
e Training: {Image, fMRI} pair * 1200

e Testing: {Image, fMRI} pair * 50

e Image: Natural Image from ImageNet

e fMRI: fMRI scan from 5 participants

e Selected voxels from visual cortex

e Training set and testing set don‘t have overlapping
category

(T Horikawa, 2017 Nat Comm)
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Dataset #2 BOLD5000

e Training: {Image, fMRI} pair * 4916

Testing: {Image, fMRI} pair * 113

Image: Natural Image from ImageNet, SUN dataset, COCO
dataset

fMRI: fMRI scan from 4 participants

e Selected voxels from visual cortex

Training set and testing set have some overlapping gtegories

(N Chang, 2019 Scientific Data) -




Results — Compare with Benchmarks

Ours Ozcelik (2022)  Gaziv (2022) Beliy (2019) GT Ours Ozcelik (2022) Gaziv (2022)  Beliy (2019)

e Ozcelik is GAN-based method

e Gaziv and Beliy are autoencoder-based methods



Result - Generation Consistency

Higher consistency - model reliability (as diffusion model is a probablistic model)

GT Reconstructed Samples

Figure 7. Generation Consistency of MinD-Vis. Images generated by
our method were consistent across different samplings trials, sharing
similar low-level features and semantics.




Result - Replication Dataset

Figure 8. Replication Dataset (BOLDS000). It achieved similar
quantitative results as the GOD dataset. S50-way top-1 identification
accuracy: 34%; FID: 1.2 (Subject 1).




Result - Extra Feature Decoded

Pros or Cons?

GT Subject 1 Subject 2 Subject3  Subject 4

Figure 9. Extra Features Decoded. Imagery-related details can be
decoded with our method. e.g. the river and blue sky were decoded with
natural scenery stimulus (top row); similar interior decorating of indoor
environments was decoded when a house was presented (bottom row).




Failure Cases

Possible reasons?

e Stimuli-unrelated thoughts

e These feature not common in the
training set

-> harder to decode

e Example: sock & sheep

Animals are more common than clothings in the
training set

A semantic like “furry” ismore likely to be decoded as
animals rather than clothes




Limitation

MinD-Vis
e Lacks of strong pixel-level guidance
e No interpretation of the features learned by SC-MBM

e The generation variance is larger than deterministic models

General decoding field
e Focus on individual-level decoding

e Focus on task specific region only (e.g. visual cortex)
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