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Task Procedures

Various procedures for the same task



Task Procedures

Task procedure  =  action steps  +  temporal ordering



Can we build a vision model that understands task procedures?
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Our Work: Procedure-aware Video Representation
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Goal: learning video representation that encodes action
steps and their ordering, without using human annotation
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Previous Work for Understanding Procedures

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019
Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020

Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022
Koupaee, et al., WikiHow: A large scale text summarization dataset, arXiv 2018

Tang, et al., CVPR 2019 Miech, et al., CVPR 2020 Koupaee, et al., arXiv 2018Lin, et al., CVPR 2022



Previous Work for Understanding Procedures

 Rely on human annotation limited step categories

 Rely on procedures summarized by human fixed steps, fixed ordering

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019
Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020

Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022
Koupaee, et al., WikiHow: A large scale text summarization dataset, arXiv 2018

Tang, et al., CVPR 2019 Miech, et al., CVPR 2020 Koupaee, et al., arXiv 2018Lin, et al., CVPR 2022



Key Challenges

 How to obtain the labels of individual video clips? (step concepts)

 How to capture immense variations in procedures? (step ordering)



Our Work: Key Ideas
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Our Work: Key Ideas

 How to obtain the labels of individual video clips? (step concepts)

 Leverage image-language model to align video-step

 How to capture immense variations in procedures? (step ordering)

 Design a probabilistic model to learn variations present in videos

Open-set understanding Zero-shot inference Diverse forecasting



Procedure-aware Video Representation

Miech, et al., HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips, CVPR 2019
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Procedure-aware Video Representation
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Procedure-aware Video Representation

Video encoder: learns representation for input video clips, supervised by step description
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Procedure-aware Video Representation

Question: how to learn step ordering & capture procedure variations?
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Procedure-aware Video Representation
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Goal: reconstruct missing action conditioned on adjacent actions

Novelty: learning the step ordering provided by videos themselves (self-supervised)
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Procedure-aware Video Representation

Novelty: design a diffusion model to capture step ordering & variations in procedures
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Procedure-aware Video Representation

Diffusion model: captures step ordering & variations in procedural activities 
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Reconstruction loss &  language matching loss 

language matching loss language matching loss 

Procedure-aware Video Representation: Training

During training, we adopt language matching loss & reconstruction loss



Procedure-aware Video Representation: Inference
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Procedure-aware Video Representation: Inference

New capabilities: 

• zero-shot inference for both step classification & forecasting (first work)

• diverse predictions for step forecasting
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Evaluation Benchmark

Evaluation Dataset: 

 COIN has 400 hours of videos with step instances annotated (180 tasks, 778 steps)

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019
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Evaluation Benchmark

Evaluation Dataset: 

 COIN has 400 hours of videos with step instances annotated (180 tasks, 778 steps)

Evaluation tasks

 Step classification: Classify the input short video clip into a step category

 Step forecasting: Forecast next step, given the input video recording previous steps

Evaluation Settings:

 Zero-shot setting: directly evaluate the pretrained model

 Fine-tuning setting: fine-tune pre-trained model using human annotation

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019



Step Classification Results on COIN Benchmark
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Lei, et al., Less is more: Clipbert for video-and-language learning via sparse sampling, CVPR 2021
Bertasius, et al., Is space-time attention all you need for video understanding, ICML 2021

Xu, et al., VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021
Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022
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Step Classification Results on COIN Benchmark

• New state-of-the-art results on both zero-shot & fine-tuning settings

• Our procedure-aware pretraining learns high-quality video representation
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Step Forecasting Results on COIN Benchmark

• We’re the first work that supports zero-shot forecasting by learning from unannotated videos

Top-1 
Acc (%)

9.4

11.3

0.1

Zero-shot setting
Ours
CLIP

Random



Step Forecasting Results on COIN Benchmark

• We’re the first work that supports zero-shot forecasting by learning from unannotated videos

Top-1 
Acc (%)

9.4

11.3

0.1

Top-1 
Acc (%)

Zero-shot setting Fine-tuning setting

25.6

34.7

Pretrained by action 
labels from human

Ours
CLIP

SlowFast

TimeSformer

Random



Step Forecasting Results on COIN Benchmark

• We’re the first work that supports zero-shot forecasting by learning from unannotated videos
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Step Forecasting Results on COIN Benchmark

• We’re the first work that supports zero-shot forecasting by learning from unannotated videos

• Our learned video representation largely facilitates fine-tuning setting
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Zero-shot Step Forecasting

Given an input video, our model outputs diverse predictions for next step 



Key Frame Generation

Rombach, et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022

After forecasting, the step description is used for image generation via Stable Diffusion



Zero-shot Step Forecasting & Key Frame Generation

Our model forecasts next step, which is further used for image generation via Stable Diffusion



Conclusion

Thank you!Code: https://github.com/facebookresearch/ProcedureVRL

• ProcedureVRL: learns procedure-aware video representation from 
instructional videos and their narrations, without human annotation

• Key technical innovation: joint learning of video representations of 
action steps, as well as a diffusion model capturing the temporal 
ordering of the steps

• Results: new state of the art in both step classification and forecasting 
on instructional video benchmarks, supporting zero-shot forecasting, 
diverse step prediction, and key frame generation

https://github.com/facebookresearch/ProcedureVRL
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