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ProcedureVRL: Procedure-aware Video Representation Learning
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Task Procedures




Task Procedures

Various procedures for the same task



Task Procedures

Task procedure = action steps + temporal ordering



Can we build a vision model that understands task procedures?
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Our Work: Procedure-aware Video Representation
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Goal: learning video representation that encodes action

steps and their ordering, without using human annotation



Our Work: Procedure-aware Video Representation
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— Previous Work for Understanding Procedures
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— Previous Work for Understanding Procedures
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> Rely on human annotation = limited step categories

> Rely on procedures summarized by human - fixed steps, fixed ordering

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019

Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020
Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022

Koupaee, et al., WikiHow: A large scale text summarization dataset, arXiv 2018



Key Challenges

e How to obtain the labels of individual video clips? (step concepts)

e How to capture immense variations in procedures? (step ordering)



Our Work: Key Ideas

e How to obtain the labels of individual video clips? (step concepts)

v Leverage image-language model to align video-step

e How to capture immense variations in procedures? (step ordering)

Open-set understanding Zero-shot inference



Our Work: Key Ideas

e How to obtain the labels of individual video clips? (step concepts)

v Leverage image-language model to align video-step

e How to capture immense variations in procedures? (step ordering)

v Design a probabilistic model to learn variations present in videos

Open-set understanding Zero-shot inference Diverse forecasting



Procedure-aware Video Representation
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Miech, et al., HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips, CVPR 2019
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Pseudo label creation

(@ ),
stir egg
CLIP jack the car
Model . carve pumpkin
Video clips Step description pool

— 9

[ Video encoder J

Recognition

Frames of video clip 1

CLIP: creates pseudo labels for individual action steps
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Video encoder: learns representation for input video clips, supervised by step description



Procedure-aware Video Representation

Pseudo label creation
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Recognition

Frames of video clip 1 Frames of video clip 2 Frames of video clip N

Question: how to learn step ordering & capture procedure variations?



Procedure-aware Video Representation
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Novelty: learning the step ordering provided by videos themselves (self-supervised)



Procedure-aware Video Representation
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Novelty: design a diffusion model to capture step ordering & variations in procedures



Procedure-aware Video Representation
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Diffusion model: captures step ordering & variations in procedural activities



Procedure-aware Video Representation: Training
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During training, we adopt language matching loss & reconstruction loss



Procedure-aware Video Representation: Inference
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Procedure-aware Video Representation: Inference

flatten dough

bake pizza

bake cookies

Step Classification Step Forecasting

New capabilities:

» zero-shot inference for both step classification & forecasting (first work)

» diverse predictions for step forecasting



- Eyaluation Benchmark

Evaluation Dataset:

e COIN has 400 hours of videos with step instances annotated (180 tasks, 778 steps)

Domain

Household Items Replace the Door Knob {remove the door knob, remove bolt and pin board, install new pin board, install new door knob }

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019



- Eyaluation Benchmark

Evaluation Dataset:

e COIN has 400 hours of videos with step instances annotated (180 tasks, 778 steps)

Evaluation tasks
e Step classification: Classify the input short video clip into a step category

e Step forecasting: Forecast next step, given the input video recording previous steps

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019



- Eyaluation Benchmark

Evaluation Dataset:

e COIN has 400 hours of videos with step instances annotated (180 tasks, 778 steps)

Evaluation tasks
e Step classification: Classify the input short video clip into a step category

e Step forecasting: Forecast next step, given the input video recording previous steps

Evaluation Settings:
e Zero-shot setting: directly evaluate the pretrained model

e Fine-tuning setting: fine-tune pre-trained model using human annotation

Tang, et al., COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis, CVPR 2019



— Step Classification Results on COIN Benchmark
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Feichtenhofer, et al., SlowFast networks for video recognition, ICCV 2019

Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020
Lei, et al., Less is more: Clipbert for video-and-language learning via sparse sampling, CVPR 2021

Bertasius, et al., Is space-time attention all you need for video understanding, ICML 2021

Xu, et al., VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021

Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022



— Step Classification Results on COIN Benchmark
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Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020
Lei, et al., Less is more: Clipbert for video-and-language learning via sparse sampling, CVPR 2021

Bertasius, et al., Is space-time attention all you need for video understanding, ICML 2021

Xu, et al., VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021

Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022



Step Classification Results on COIN Benchmark
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Feichtenhofer, et al., SlowFast networks for video recognition, ICCV 2019

Miech, et al., End-to-End Learning of Visual Representations from Uncurated Instructional Videos, CVPR 2020
Lei, et al., Less is more: Clipbert for video-and-language learning via sparse sampling, CVPR 2021

Bertasius, et al., Is space-time attention all you need for video understanding, ICML 2021

Xu, et al., VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021

Lin, et al., Learning To Recognize Procedural Activities with Distant Supervision, CVPR 2022



Step Classification Results on COIN Benchmark
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* New state-of-the-art results on both zero-shot & fine-tuning settings

* QOur procedure-aware pretraining learns high-quality video representation



— Step Forecasting Results on COIN Benchmark
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— Step Forecasting Results on COIN Benchmark
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* We're the first work that supports zero-shot forecasting by learning from unannotated videos



— Step Forecasting Results on COIN Benchmark
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* We're the first work that supports zero-shot forecasting by learning from unannotated videos



— Step Forecasting Results on COIN Benchmark
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Fine-tuning setting

* We're the first work that supports zero-shot forecasting by learning from unannotated videos

* QOur learned video representation largely facilitates fine-tuning setting



Zero-shot Step Forecasting

Model input: videos Diverse predictions and generated key frames for next step

flatten the dough bake pizza bake cookies

Given an input video, our model outputs diverse predictions for next step



Key Frame Generation

Model input: videos J Diverse predictions and generated key frames for next step
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flatten the dough bake pizza bake cookies

After forecasting, the step description is used for image generation via Stable Diffusion

Rombach, et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022



Zero-shot Step Forecasting & Key Frame Generation

Model input: videos Diverse predictions and generated key frames for next step
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pour some salt to put the ingredients prepare seasonings
the garlics into the bowl and side dishes

Our model forecasts next step, which is further used for image generation via Stable Diffusion



Conclusion

* ProcedureVRL: learns procedure-aware video representation from
instructional videos and their narrations, without human annotation

e Key technical innovation: joint learning of video representations of
action steps, as well as a diffusion model capturing the temporal
ordering of the steps

* Results: new state of the art in both step classification and forecasting
on instructional video benchmarks, supporting zero-shot forecasting,
diverse step prediction, and key frame generation

Code: https://github.com/facebookresearch/ProcedureVRL Q@WW/


https://github.com/facebookresearch/ProcedureVRL
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