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Quick preview

* Motivations

* How to?
> Solve the visible-infrared recognition task efficiently and device friendly. > Use lightweight backbones instead of the ResNet-50.
> Make the model easy and quick to train, finetune, and deploy. > Improve the pretraining strategy rather than pile up many modules.

* Three steps to understand our solutions * Results
. _ FLOPs | SYSU-MMOI RegDB
Step-1 : Task-oriented pretraining for VI recognition Step-2 : Unify weights Methods
Tesk-oriented augmentation _________________ Dualpathtraining _______________ TR ) = > = p
" S : % % % (M) r—l. mAI r.] mAlI
P AR Ly Elorq |[l2lal = = ResNet-50 3562 | 5698 5472 | 7686  71.30
v £BEE (, o e, ||V s £ |  ConvNeXt-Tiny 3620 | 5872 5531 | 7825  72.64
e R EE f%é—I || [Cniform soupf=p> EE z Vit-B 5689 | 5217 5181 | 7531  70.37
ol . infared learmine 7 hikdy | 4p 4 4 3 Swin-Tiny 3287 | 5824  55.16 | 7839  72.68
[ D 33| 2= 2>, 2] 2] 2 ShuffleNetV2-1.0 x 139 | 4188 4194 | 67.83 6485
S g el telalsl ] o AN +TOP & FDR 177 | 55.71 5263 | 79.82  66.36
Step-3 : Training on VI datasets ittt \ Shu"li:g:?&' IF‘:); i;‘? 2;:2 2{?}2: ;2 ::: 22;:
Visible T ‘ orizomal(‘.%kg‘".) veraj cl("%-l-“ _ E _ —— - — =
3 e > b | s el A = |  GhostNet-1.0x 150 | 4253 4294 | 7128 6440
= Vi rETerEl = 2 +TOP & FDR 189 58.54  55.19 | 8326 77.16
Vi S wEm 000 Q> s D 2 ; §—>§ A E GhostNet-1.3 x 281 50.80  47.92 | 7251  65.98
datoects (5] /" bre cmboding | T — 2 +TOP& FDR | 395 | 66.76  64.01 | 8551  79.95
= . Jertica \verage N .
Infrared | 2 . }—# oot | samgh 5 MobileNetV3-S 104 4092 4251 | 6277 5831
— ' c, ot H. ) [l“.TA 1,1) [
____ Fine-Grained Dependency Reconstruction Module R B L =S [
MobileNetV3-L 250 4781 4706 | 7126  65.66
+TOP & FDR 362 66.14 6380 | 84.15 79.26

=

Prepare a lightweight network using the task-oriented pretraining strategy. » Make lightweight networks better than conventional deep networks.
Use the uniform soup to make the structure best for VI training.

3. Training (finetuning) on VI datasets with the FDR module. » Around 10x faster than previous solutions.
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* What is visible-infrared recognition? * Potential solutions

Use ImageNet pretrained lightweight backbones instead of

Visible Image Set the commonly used ResNet-50 for feature extraction.
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Infrared Image Set ResNet-50 78.8 56.98
MobileNetV3-L 75.2(1 3.6) 47.81(1 9.71)
* Shortcoming in existing work * Why?

1. The ImageNet is a pure visible dataset.

Too heavy to deploy on edge devices 2. Few learnable parameters, few learnt visual patterns.

3. Colour-related prior knowledge is dominant!



Our solution: Task-oriented pretraining

* What is the difference between existing
pretrain methods and ours ?

* How to?

P1:

1. Existing: Prepare for all downstream tasks 1. Task-oriented Augmentation

2. Ours: Prepare for VI recognition only. —> Simulate the visual differences in VI scenes and disturb the colour information
P2 :

2. Dual-path training with fake domain loss

1. Existing: Pretrain->Finetune > Improve the “heterogenous feature” represent and embed capacity

2. Ours: (Pretrain->Adapt)->Finetune

P3: (a): Task-oriented pretrain for VI recognitionl

Existing: From One-path to Dual-path Identity loss
Identity loss Fake domain loss
2. Ours: From Dual-path to Dual-path fenty o e doman o

=

: : Traini Dual-path traini
Light-weight % ImageNet LR ammg} ImageNet —>| Weight
networks 150 epochs 1K 50 epochs I% P —> Unify
* What does TOP do? A A
: : Common Task-oriented
Durmg the pretrain stage, we hope to Augrientations Augmentations

(1) Let the network learn prior knowledge related to infrared images.

(2) Disturb the color-prior knowledge to make the network pay
more attention to the modality-shared patterns.

(3) Let the network know how to extract shared patterns from two
groups of “heterogenous features” to identify them well.



Table 1. Detailed structures of each Block. We package the entire

Step-1: Task-mjlented pretralmmg for VI recognition N Step-2 : Unify weights mobileNetV3-Large into Block1-7 without overlap.
Task-oriented augmentation Dual-path training =T =1~
TTTTTTT T Y = == = R L] g = Block partitions on MobileNetV3-large
ImageNet ' : . EI fﬁl QI Erla T 0 : 8| 8| 8 -
1K : e —>1 2|2 | g Lg S>L., . ||lB] @] M Layer name Structures Output size
v : ! Plﬁ‘}‘m N T G &y | Blockl1 conv(3x3, 2), bneck(3x3, 1) 16 5 1192
‘e : : epare for visible lea g 2l gl : : N = 2
——13 ¥ I EE | => EE Block? bk, 2 24 562
o ! ! 1+ Prepare for infrared learning m|m M 21&Ty @ @ 4} = ock3 neck(3x3, 1) X 56
-mini I e STara 5 e Block4 bneck(5 x5, 2), bneck(5x5, 1)*2 40 x 282
’ JANSNG-JENE- IR L L s Sl el g Blocks bneck(3x3, 2), bneck(3x3, 1)*5 | 112 x 142
: Avgmenwtions ;71 & | 7 2| 2| £ @ TN B R R B Block6 bneck(5x5, 2), bneck(5%5, 1)¥2 | 160 x 72
e e e e eeeemeaas oeo-e- [ LA alA Block7 conv(lx1, 1)*3 1280 x 72
Fi rstly, we pretra In our network on ImageNet— 1k with identity— loss and Raw image Generic augmentations | Color augmentations Texture augmentations

common augmentations (Crop+Flip).

Secondly, we package the entire trained network (example shows the
MobileNetV3-L) into Blockl-Block7. Then, for the Blockl-Block4, we initialize
them twice with the same pretrain weights to make the dual-path network.

Thirdly, we retrain the dual path network on ImageNet-mini, with task-
oriented augmentation to create visual differences between each path.
During training, the identity-consistency loss (L_jq.) and fake domain loss
(Lrq) are adopted to supervise the overall network.

Finally, after the retrain on ImageNet-mini, we unify the weights of
Block(2,3,4)-1 and Block(2,3,4)-2 via Uniform Soup. That makes the final
dual-path network used in VI datasets only have two stem blocks (Block1-1,
Blockl1-2).
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Original image Colour augmented Texture augmented

Images in VI-RelD

Raw image Generic augmentations

Color augmentations Texture augmentations
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Why task-oriented
augmentation?

The generic DAs aim to increase the broad diversity

The colour DAs are designed to disturb the regularity of colour-prior information
and are only imposed on the branch prepared for visible learning.

The texture DAs are designed to to remove the colour information and change
the texture styles only in the branch prepared for infrared learning.

Combining them all, we aim to simulate the visual differences in the real VI
recognition scene and train the dual-path network to handle them during the
pretraining stage. E.g., in this manner, two stem blocks are trained for
extracting the modality-prior irrelevant patterns, like global shapes and the
relative position of local objects.



Why we need fake domain loss ?

* Just in the above manner, the network may still lazily learn from one
path to avoid feature embedding. Meanwhile, the visual differences
made via augmentations are scanty to simulate the actual domain
conflict during training. Thus, we proposed the fake domain loss to
perform the self-against learning, which impels the network to learn
domain knowledge from both paths.

Ltg = La(x1,d1) + La(GRL(X1), dy),
L3, = La(x2,d2) + La(GRL(X,),d2),

* In this manner, we create two contradictory learning procedures: the
positive domain constraints are set on x;& x5, which force them to be
representative for the fake domain we pretended. Meanwhile, with
reserved gradients, inversed domain constraints are set on X; & X5,
which encourage the final features after Block7 to be domain-shared.

* During this procedure, Block(2,3,4)-1 and Block(2,3,4)-2 are trained to
extract two types of strongly distinguished features. In comparison,
Block(5,6,7) are trained to embed these two types of "heterogenous
features” and find their common ground.

6, = {0,0,0, ..., 0}, pretend to be domain A
6, ={1,1,1, ..., 1}, pretend to be domain B
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The icing on the cake: Fine-grained dependency reconstruction module

This module intends to help lightweight networks build cross-modality
correlations effectively. The core motivation is to break the original dependencies,
and then build the modality-shared one. It can be summarized as two parts: The
spatial modelling part (before shuffle attention) and channel relation reasoning
part (shuffle attention).

For the first part, we first slice the original features into two types of fine-
grained features : horizontal and vertical. They are respectively concated in the
second dimension. Then, we use the average pooling operation to concentrate
the sliced spatial information, which converts the original spatial maps into
vectors. The procedure breaks the original spatial dependencies among each
fine-grained regions.

After that, two independent Up-sampling layers are adopted to reconstruct the
spatial maps according to two types of directional vectors. The “embedding
with up-sampling” scheme intends to fully discover the modality-shared
patterns from the re-enlarged regions fully.

Finally, we concat these two types of features in the channel dimension and fed
them into the shuffle attention module to perform channel relation reasoning.
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The Overall Pipeline
of This Paper

Contributions

* We proposed a task-oriented pretraining
strategy for VI recognition.

* We proposed a fine-grained dependency
reconstruction module for VI recognition.

* We make the lightweight networks
competitive with the regulars for VI
recognition.

* Our methods reach the current SOTA
level with nearly 1/10 FLOPs using
common identity and triplet loss.
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Table 4. Experimental results on different lightweight networks

) Table 5. Evaluation of spatial modelling methods and channel re-
and conventional deep networks.

lation reasoning methods in the FDR module. “u.” and “cs.” re-

FLOPs | SYSU-MMOI RegDB . ) .
Methods : °e spectively denote the up-sampling and channel shuffle operations.
™) =1 mAP =1 mAP (a): Impact on Different Spatial Modelling Methods
= ResNet-50 3562 | 5698 5472 | 76.86  71.30
=] -
E ConvNeXt-Tiny 3620 | 5872 5531 | 7825 7264 Methods SYSU-MMOI RegbB
z Vit-B 5680 | 5217 5181 | 7531 7037 r=1 mAP  mINP | r=1 mAP  mINP
S Swin-Tiny 3287 | 5824 5516 | 7839 7268 GAP 6289 5979 4584 | 8288 7624 6192
ShuffleNetV2-1.0 x 139 41.88 4194 | 6783 6485 Context [2] 61.37 5752  46.08 81.56 7449  62.11
+TOP & FDR 177 | 5571 5263 | 7982 6636 HAP [38] 62.92 5813 4784 | 8298 7620 6277
ShuffleNetV2-1.5x 265 4739 4781 | 7015 6528 H. + V. (wiou) | 6345 5075 4961 | 8394 7882 6321
+TOP&FDR | 371 | 6335 6081 | 84.13 76.98 H, + V, 66.14 63.80 49.76 | 84.15 79.26  63.86
£ GhostNet-1.0 150 4253 4294 | 7128 6440 (b): Impact on Different Channel Relation Reasoning Methods.
Hrrmrrre e SYSUMMOI RegDB
= 0stNet-1.3 x . . . . Methods _
E’J +TOP&FDR | 395 | 6676 64.01 | 8551 79.95 r=I  mAP  mINP | r=I mAP  mINP
MobileNetV3-S 104 4092 4251 | 6277 5831 SE [16] 6291 5970 4578 | 8279 7145  62.34
+TOP & FDR 130 | 5475 5026 | 7553 70.17 CBAM [35] 6179 56.88 4525 | 8341 7728 62.96
MobileNetV3-L 250 | 4781  47.06 | 7126  65.66 SA (wlocs.) 62.81 5810 4576 | 8275 7612  62.36

Abl ati On +TOP&FDR | 362 | 66.14 6380 | 8415 7926 SA 66.14 6380 4976 | 84.15 79.26  63.86

Table 3. Evaluation of each proposed component on two VI-RelD datasets. “Augs.” indicates the augmentations. G, C and T denote the

[ ]
EX e rI m e n tS generic, colour, and texture augmentations, respectively. In the FDR module, Hs and V, denote the horizontal and vertical slices with
up-sampling. S A is the shuffle attention module. Rank (r) (%), mAP (%) and mINP (%) are reported.

Task-oriented pretraining stage VI training stage
No. Augs. Loss functions FDR module SYSU-MMO1 (all-search) RegDB (visible-to-infrared)

G C+T Liq Lige Lgg H, Ve SA r=1 r=10 mAP mINP r=1 =10 mAP mINP
1 47.81 89.71 47.06 3348 7126  89.94  65.66  48.50
2 v v 4328 8596 4556  31.10 | 70.73  88.52  65.65 484l
3 v v v 4985 89.74 47,56 3552 | 7132 8991  65.67 4849
4 v v v 5428 92.11 5294 4129 | 7531 9264 68.78  52.16
5 v v v v 6241 9412  59.06 45.13 8275 9413  76.21 61.84
6 v v v v v 62.80 9426 5979 4584 8288 9419 7624 6192
7 v v v v v v 6395 9528 60.09  46.80 83.07 9448 7655  62.20
8 v v v v v v 64.04 9541 61.12 4692 8322 9469 77.01 63.16
9 v v v v v v v 66.14 96.03 63.80 49.76 84.15 9498 7926  63.86




Comparison with SOTAs In V| RelD

Table 6. Comparison with the state-of-the-arts on SYSU-MMO1 [

]. Metrics of Rank at r (%), mAP (%) and mINP (%) are reported.

Details All-search Indoor-search
Methods Backbone FLOPs (M) r=1 =10 =20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-pad [25] ResNet50 >3562 14.80 54.12 71.33 15.95 — 20.58 68.38 85.79 26.92 —
JSIA [30] ResNet50+GAN >4133 38.10 80.70 89.90 36.90 — 43.80 86.20 94.20 52.90 —
AGW [42] ResNet50 >3562 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23
X-Modal [19] ResNet50 >3562 49.90 89.80 96.00 50.70 — — — — - —
DMiR [38] ResNet50 >3562 50.54 88.12 94.86 49.29 — 53.92 92.50 97.09 62.49 —
FBP-AL [32] ResNet50 >3562 54.14 86.04 93.03 50.20 — - - - - -
DDAG [41] ResNet50 >3562 54.75 90.39 95.81 55.02 39.62 61.02 94.06 98.41 67.98 62.61
HAT [43] ResNet50 >3562 55.29 92.14 97.36 53.89 — 62.10 95.75 99.20 70.84 —
LBA [206] ResNet50 >3562 5541 — — 54.14 — 58.46 - - 66.33 -
TSME [21] ResNet50 >3562 64.23 95.19 98.73 61.21 — 64.80 96.92 99.31 71.53 —
SPOT [4] ResNet50+ViT >4810 6534 9273 97.04 62.25 48.86 69.42 96.22 99.12 74.63 7048
TOPLight (Ours) MobileNetV3-L = 362 66.14  96.03 97.68 63.80 49.76 7241 97.54 99.23 76.11 71.43
TOPLight (Ours) GhostNet-1.3x =395 66.76  96.23 98.70 64.01 50.18 72.89 97.93 99.28 76.70 71.95
Table 7. Comparison with the state-of-the-arts on RegDB [25]. Metrics of Rank at r (%), mAP (%) and mINP (%) are reported.
Details Visible-to-Infrared Infrared-to-Visible
Methods Backbone FLOPs (M) r=1 r=10 =20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-pad [35] ResNet50 >3562 17.75 34.21 4435 18.90 — 16.63 34.68 44.25 17.82 —
JSIA [30] ResNet50+GAN >4133 48.50 — — 49.30 — 48.10 — — 48.90 —
AGW [42] ResNet50 >3562 70.05 86.21 91.55 66.37 50.19 70.49 87.21 91.84 65.90 51.24
X-Modal [19] ResNet50 >3562 62.21 83.13 91.72 60.18 — — — - - —
DMIiR [38] ResNet50 >3562 75.79 89.86 94,18 69.97 — 73.93 89.87 93.98 68.22 —
FBP-AL [32] ResNet50 >3562 73.98 89.71 93.69 68.24 — 70.05 89.22 93.88 66.61 -
DDAG [41] ResNet50 >3562 69.34 86.19 91.49 63.46 4924 68.06 85.15 90.31 61.80 48.62
HAT [43] ResNet50 >3562 71.83 87.16 92.16 67.56 — 70.02 68.45 91.61 66.30 —
LBA [26] ResNet50 >3562 74.17 — — 67.64 — 72.43 — — 65.46 —
SPOT [4] ResNet50+ViT >4810 80.35 93.48 96.44 72.46 56.19 79.37 92.79 96.01 72.26 56.06
GECNet [48] ResNet50+GAN >4350 82.33 92.72 95.49 78.45 — 78.93 91.99 95.44 75.58 -
TOPLight (Ours) MobileNetV3-L =362 84.15 94,98 96.58 79.26 63.86 80.94 92.85 96.37 76.10 59.33
TOPLight (Ours) GhostNet-1.3 x =395 85.51 94.99 96.70 79.95 63.85 80.65 92.81 96.32 7591 59.26




Comparison with SOTAs in VI Face

Recognition

Table 8. Evaluation on two VI-FR datasets. CA is channel aug-
mentation [40]. B is the LightCNN-29 baseline. Rank at 1 accu-
racy (%) and false acceptance rate (F: %) are reported.

Oulu [5] BUAA [17]

Methods =1 Fl1% F01% r=1 F1% F0.1%
IDR [13] 943 734 462 943 934 84.7
VSA [44] 999  96.8 82.3 980 982 92.5
PACH [%] 100 979 882 986 980 93.5
B [36] 100 979 870 980 977 93.7
B+CA [40] 100 989 91.7 983 982 94.5
B-+TOP 100 988 91.5 983  98.1 94.5
B+TOP-+FDR (Ours) | 100 989 91.7 983 982 94.6




Thanks!
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