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Framework Overview
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Experiment

Methods PRID-2011 [iLIDS-VID MARS
Network InputmAPRank-1mAP Rank-1{mAP Rank-1
GRL [35] V |92.7 899 [90.1 84.7 |82.2 88.3

OSNet [59] V [92.7 899 |89.0 82.7 |81.4 87.3
SRS-Net [45] V [88.8 84.3 [89.8 84.0 [82.9 88.1
STMN [II] V [92.8 88.8 (84.1 77.3 |81.8 88.3
CTL [33] V |91.5 87.6 [84.2 77.3 |82.7 89.3
PSTA [19] V |92.3 88.8 [88.1 80.0 |83.1 89.2
STGCN [53] V - - - - [83.7 90.0
SINet [ ] A" - 965 | - 925 |86.2 91.0
RAFA [56] V - 959 | - 88.6 |859 88.8
MGH[52] V | - 948 | - 85.6 [85.8 90.0
TCLNet [21] V | - - - 86.6 [85.1 89.8
STRF [2] V| - - - 89.3 [86.1 90.3
GRL [35] E (214 11.2 |30.2 18.0 |27.7 16.7
OSNet [59] E (22.2 10.1 |27.9 16.7 |30.9 19.3
SRS-Net [45] E (17.2 9.0 (32.7 19.3 {209 10.0
STMN [II] E (20.2 11.2 |23.5 12.7 (224 10.0
CTL [33] E 1204 13.5 (284 18.0 [25.6 12.7
PSTA [19] E (222 124 224 100 (22.7 12.0
GRL [35] V+E|(93.2 876 [90.6 85.3 [82.8 88.7
OSNet [59] V+E[93.7 89.9 |90.1 84.7 |81.9 87.7
SRS-Net [45] V+E|91.5 87.6 |90.7 86.7 |83.8 89.3
STMN [!1] V+E[94.0 91.0 |87.2 81.3 |83.4 &9.0
CTL [32] V+E|93.9 91.0 |88.4 82.0 |[85.3 89.6
PSTA [49] V+E|94.7 933 [88.6 83.3 85—1 89.9 Figm;e 2(;1)\/1—:5“;11 exrz:lmp]fé:;f cl;fsl'flz‘zn[l?;i (fea}ture milp)s.(F)r?mttOP to thtofm: (a) c;riih;(aé ir;lage:t ()b) corresponding events, (c) feature maps of
Oiiis V+E @ ﬁ 93.2 927 |86.5 m events, eature maps '] (w/o events), (e) feature maps of our network (w/ events).




Introduction

Although video data can provide a wealth of appearance cues for identity
representation learning, they also bring motion blur, illumination variations,

and occlusions.
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Introduction

Event streams
* Low power
* Low latency

* High temporal resolution

* High dynamic range

Tulyakov, Stepan, et al. "Time lens: Event-based video frame interpolation." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021.
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Spike Neural Network

The polarity of event streams represents an increase or decrease of brightness at one
pixel. Inspired by the dynamics and adaptability of biological neurons.
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Figure 3. The structure of Leaky Integrate and Fire (LIF) Spike g

Neuron. The synaptic weight modulates the pre-spikes, which are pHLn Z ot =1
then incorporated as a current influx in the membrane potential and ' \ *’ o
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the membrane potential whenever the membrane potential reaches u, O =u f(o;
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Deformable Ma

Most of recent works have shown that the number of
spikes drastically vanishes at deeper layers, resulting in
serious performance degradation. As shown in Figure 4.
It clearly limits the application of SNN 1n computer
vision. the deeper the SNN layer 1s, the more the
number of spikes vanishes. But using deformable
mapping can still preserve spatial information of events.

=y

fi W
(a)

Figure 4. Visualization of features in SNN and deformable map-
ping. (a) presents events; (b) shows that the deeper the SNN layer
is, the more the number of spikes vanishes. But using deformable
mapping (c) can still preserve spatial information of events.
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Cross Feature Alienment
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Thank you !

Code: https://github.com/Chengzhi-Cao/SDCL



