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Background and Motivation

. Point Cloud Rendering is conducive to 3D visualization, navigation, and
augmented reality;

Il.  Graphics-base rendering only generates image with holes;

Ill.  Neural Radiance Fields (NeRF) can synthesis photo-realistic images thus our
method combines point cloud with NeRF;

IV. Advantages of combining Point Cloud with NeRF, i.e., Point2Pix:
. Multi-scale NeRF to overcome hole artifacts
. Efficient Point Sampling for NeRF
. Generalization for Point Cloud Feature Extraction
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Efficient Neural Radiance Fields

Novel 3D Representation: Neural Radiance Fields (NeRF) [1]

Radiance
Neural Network Attributes 3D Continuous
(MLP) (Density / Color) Distributions

——

Continuous 3D attribute distributions
represented by Neural Network
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Efficient Neural Radiance Fields

Neural Radiance Fields (NeRF)

Main Idea: Query all points’ RGBo from an MLP for volume rendering
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Our Approach

l.  Point-guided Sampling
We treat the queried point x; as a valid sample then obtain the point feature, when it satisfied the following equation:
llp: —xill <7

Il.  Multi-scale Radiance Fields
We extract 3D point feature from multiple scales and render to 2D Feature Maps:
(03, f) = @(F) = ®y(F[x])

=3Yw;-f;
w; = exp(—=X0;6;)(1 — exp(—0;6;))
lll.  Fusion Decoding

We fuse multiple 2D feature maps to decode image

(v, B) = Conv2D(f)
F « y-LayerNorm(F) + B

IV. Loss Function
{= }'pclpr: + Apnplnr + Aperlpr
M— |
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ur Approach: Overview
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Point-guided Sampling
We treat the queried point x; as a valid sample then obtain the point feature, when it satisfied the following equation:
llp: —xill <7
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Figure 2. The proposed point-guided sampling. For any queried
point x;, we find its nearest point p; in the point cloud. If x; is
located in the ball area (with radius ) of p,, it is a valid sample.
Invalid samples are omitted to improve sampling efficiency.
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Il.  Multi-scale Radiance Fields

We extract 3D point feature from multiple scales and render to 2D Feature Maps:
(03, f) = @(F) = ®y(F[x])

=W f;
w; = exp(—=X%0;6;)(1 — exp(—0;6;))
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lll.  Fusion Decoding
We fuse multiple 2D feature maps to decode image

v, B) = Conv2D(f)

F « y-LayerNorm(F) + 8
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Our Approach

IV. Loss Function
'e = }'pcepc + }'nrenr + }'perlpr

Point Cloud Loss: Point Cloud provides ground-truth density and color
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Neural Rendering Loss: Image Reconstruction Loss

tnr = [T ’”;

Neural Rendering Loss: Image Reconstruction Loss

Lyer = 0D - S g
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I.

Quantitively Comparison on ScanNet and ArkitScene dataset

Dataset ScanNet [0] ARKitScenes [1]

Metrics PSNRT _ SSIM{ _ LPIPS| | PSNRf _ SSIMf _ LPIPS|
Pytorch3D [38] 13.62 0528 0.779 1521 0581 0.756
Pix2PixHD [47] 1559 0.601 0.611 15.94 0.636 0.605
NPCR [10] 16.22 0.659 0.574 16.84 0.661 0518
NPBG++[11] 16.81 0.671 0.585 1723 0.692 0511
ADOP [41] 16.83 0.699 0577 1732 0707 0.495
Point-NeRF [51] | 17.53 0.685 0517 17.61 0.715 0.508
Point2Pix (Ours) | 1847 0.723 0.484 18.84 0.734 0471

Table 1. Comparing our method with different point renderers on the ScanNet [9] and ARKitScenes [3] datasets. There is no finetuning

process in this which the in novel scenes.
Method Time PSNR()  SSIM () LPIPS({)
Point-NeRF [51] | 0 mins 17.53 0.685 0.517
Point2Pix (Ours) | 0 mins 18.47 0.723 0.484
NeRF [29] ~30hours| 21.33 0.788 0.355
NSVF [23] ~40 hours 22.47 0.791 0.337
PlenOctrees [54] |~30 hours 22.02 0.795 0.341
Instant-NGP [30] | 20 mins 21.94 0.775 0.363
Plenoxels [53] 20 mins 22.35 0.780 0.346
Point-NeRF [51] | 20 mins 22.55 0.792 0.336
Point2Pix (Ours) | 20 mins 23.02 0.815 0318

Table 2. Comparing our method with NeRF-based methods on the
ScanNet dataset [9]. “Time” means the average finetuning time

for all scenes.
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sualization

I Qualitative Comparison on ScanNet and ArkitScene dataset
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Figure 3. Qualitative comparison between different point renderers on the ScanNet [9].
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sualization

I Qualitative Comparison on ScanNet and ArkitScene dataset
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Figure 4. Qualitative comparison between different point renderers and NeRF-based methods on the ArkitScenes [3] dataset.
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sualization

I Qualitative Comparison on Point Cloud Inpainting and Upsampling
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Point2Pix: Photo-Realistic Point Cloud

Rendering via Neural Radiance Fields

Thank you!
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