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Motivation

* New techniques solve a lot of existing problems. However they also
bring new research topic to human.
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New technologies New Issues

» We find several new research topics from novel object detection
technologies, and propose new solutions to address them.



Introduction (1/2)

= [n this work, we

= 1. design an extended version of efficient layer aggregation
network.

» 2. analyze the model scaling factors for concatenation-based
networks, and design a simple yet effective model scaling
strategy.



Introduction (2/2)

= We also use trainable bag-of-freebies to solve

» 1. make re-parameterization modules can work with modern
networks.

» 2. make lead head and auxiliary head can learn consistency
Information from dynamic label assignment methods.

Bag-of-freebies
1. Improve accuracy

2. May increase training cost
3. No additional inference cost
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Extended efficient
layer aggregation networks




Optimize gradient path instead optimize data path

» We design network architecture based on gradient path analysis.

Layer-level design: partial residual network (PRN)
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Stage-level design: cross stage partial network (CSPNet)
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Network-level design:
efficient layer aggregation network (ELAN)
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CSPVoVNet ELAN
Model FLOPs #Params APP?* APpm™ask
YOLOR-v3 [34] 194.6G 643M 49.5% 40.9%
YOLOR-PRN 194.6G  64.3M 50.0% 41.0%
YOLOR-CSP 159.0G 543M 51.0% 41.1%
YOLOR-ELAN 143.2G 345M 514% 415%




Extended efficient layer aggregation networks

» Scaling up ELAN without modifying gradient path topology.
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Model scaling for
concatenation-based models




Model scaling for concatenation-based models

* We proposed to compound scaling width of transition layers and
depth of computational blocks.
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Dynamic label assignment
meets
deep supervision




Deep supervision & Label assignment

Deep supervision
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Dynamic label assignment (DLA)

= Traditional label assignment: ground truth + rules = label

GT BBoxes 1@®] A Set of Ambiguous Anchor Points
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Deep supervision meets DLA
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Re-parameterization model
meets
modern networks




RepConv

» RepConv can make very deep PlainNet converge.

= But 1t will make accuracy of modern networks drop, such as

ResNet and DenseNet.
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Planned Re-parameterization model
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Results




Results
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Applications (1/2)

YOLOvV7 Detection
https://learnopencv.com/yolov7-object-detection-paper-explanation-and-inference
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YOLOV7 Pose

https://learnopencv.com/yolov7-object-detection-paper-explanation-and-inference

e ST X I

e

YOLOV7 Instance Segmentation
https://xugaoxiang.com
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Applications (2/2)

I aM T
YOLOv7 Multiple Object Tracking
T https://github.com/NirAharon/BoT-SORT

YOLOV7 Panoptic Driving Perception (YOLOPv2)
https://github.com/iwatake2222/play_with_tensorrt
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YOLOV7 Fall Detection
https://www.youtube.com/c/AugmentedStartups

YOLOv7 Human Behavior Analysis
https://www.youtube.com/c/AugmentedStartups




Conclusions

 In this paper, we

= 1. propose a new architecture of real-time object detector and
the corresponding model scaling method.

= 2. find that the evolving process of object detection methods
generates new research topics.

= 3. solve the replacement problem of re-parameterization
module and the allocation problem of dynamic label
assignment.

4. propose the trainable bag-of-freebies method to enhance the
accuracy of object detection.
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