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Overview
• We propose a pseudo-label guided contrastive learning (PLGCL) framework

• Pseudo-labels generated from SemiSL aids CL by providing additional guidance

• Class-discriminative feature learning in CL aids multi-class segmentation in SemiSL 

• Introduce a novel contrastive loss term on top of InfoNCE loss [Oord et al.]

• Alleviates the requirement of pretext training

• Outperforms SoTA in medical image segmentation tasks from three different modalities (CT, 
MRI, Histopathology)

[Oord et al., 2018]: Representation learning with contrastive predictive coding



SemiSL and SSL in Medical Image Segmentation
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Our Solution: Combining SemiSL in CL
Problem 1: Class collision – semantically similar objects forcefully contrasted in CL

Solution: We propose average patch-entropy based patch sampling for guided sampling of pos. and neg.

Problem 2: Defining pretext task difficult, insusceptibility to multiple domains for CL

Solution: Alleviate pretext training, instead use single training stage. Produces SoTA performance on multiple 
modalities (CT, MRI, Histopathology)

Problem 3: Biased pseudo-labels, limited segmentation performance in SemiSL

Solution: Class-specific information learnt in CL aids multiclass segmentation performance. Pseudo-labels generated 
in SemiSL provides additional guidance to unsupervised metric learning, i.e. CL



Proposed Method
Step 1: Generate pseudo-label 𝑌𝑖′ from input image 𝐼𝑖

Step 2: Generate class-wise patches from 𝑌𝑖′

Step 3: Extract feature embeddings, define pos. and neg.
for CL and compute contrastive loss

Step 4: Refine pseudo-labels using mean-teacher network

Step 5: Utilize labelled data in supervised training

Step 6: Compute total loss, model trained iteratively



Results

Table: Quantitative 
comparison with SoTA

Figure: Qualitative visualization



Ablation Experiments

Figure: Clustering performance with and without PLGCL

Table: Quantitative analysis for 
contribution of individual components

(A) ACDC (B) CRAG (A) KiTS19

Table: Comparison of different metrics
for patch sampling on the ACDC dataset.



Conclusion
• We propose a novel pseudo-label guided patch-based contrastive learning approach for 

medical image segmentation

• Pseudo-label from semi-supervised learning improves contrastive learning and vice versa

• We also introduce a new contrastive loss named PLGCL which is defined as the 
expectation of InfoNCE loss over the joint distribution of positives and negatives 

• We also introduce a guided positive and negative sampling strategy for CL using average 
patch entropy. 

• Achieves SoTA performance for multiclass medical image segmentation on three datasets 
from multiple modalities (CT, MRI, Histopathology) 
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