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Overview
● D-NeRV is an implicit neural representation designed for large-scale

and diverse videos.
● D-NeRV achieves SoTA on the video compression task.
● D-NeRV shows its advantages as an efficient and effective

dataloader for downstream video understanding task.
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Background
● Video Representations: Explicit vs. Implicit

3Chen et al. “NeRV: Neural Representations for Videos.” In NeurIPS, 2021.



Comparison of NeRV and D-NeRV
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NeRV
• Limited to encode several short

videos.
• Optimize representation to each

video independently.

D-NeRV
• Designed for encoding large-scale

and diverse videos.
• Encodes all videos into a shared

model by conditioning on keyframes.



Motivation
● Motivation: How to encode large-scale and diverse videos using the implicit neural

representation?

● Naive Solution: Encode each video with a separate model.

● Observation: Encode diverse videos in a shared model, PSNR performance increases 

as the video count increases.
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Architecture

● Encoder-Decoder: conditions on keyframes from each video

● Optical Flow: reduces spatial redundancies

● Temporal Modeling: model relationship across frames
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Visual Content Encoder

Motivation: Visual content of each video varies significantly, directly 

memorizing all videos introduces too much optimization complexity.

Solution: Sample keyframes from each video as conditional input.
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Task-oriented Optical Flow

Motivation: Reduce spatial redundancies across frames in the RGB space.

Solution: Predict task-oriented optical flow w.r.t. the keyframes.
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Global Temporal Modeling

Motivation: NeRV outputs each frame independently and neglects temporal 

relationship across frames.

Solution: Model global temporal relationship for each video clip.
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Ablation Studies
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Contribution of each components
• SAF: spatially-adaptive fusion
• GTMLP: global temporal MLP
• Flow: multi-scale flow estimation



Video Diversity Ablation
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1. Total video count fixed to 
1000.

2. Change the number of action 
classes (diversity).

3. D-NeRV is more capable of
representing diverse videos.



Video Compression Visualization
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Ground Truth NeRV D-NeRV



Video Compression
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UVG dataset



D-NeRV as Dataloader
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Dataloader



Downstream Action Recognition Task
● D-NeRV encodes the whole UCF101 dataset, use it as dataloader
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Action recognition Decoding speed

Decoding speed is much faster
than learning-based methods



Video Inpainting Visualization

21



For more details, please visit
Poster# 192 at
20-Jun-23, 4:30pm-6:30pm

Website and Code:
https://boheumd.github.io/D-NeRV

Thank You!

https://boheumd.github.io/D-NeRV

