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Background------ Definition of Semi-supervised Segmentation

A limited labeled dataset with pixel-level annotations:




Motivation------ Limitation of Pseudo Label-based Learning

Explore semantics from
unlabeled data

Learn from multiple probably

Unreliable pseudo labels correct candidate labels.
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Motivation

Compare with vanilla methods
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Two pending issues:
1. How to provide an adaptive number of labels for each pixel?
2. How to exploit the possible GT semantics from multiple fuzzy labels.



Method------Pipeline
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Figure 2. Pipeline illustration of our FPL, where FPA densely allocates multiple labels as a fuzzy positive label set for each pixel, while
FPR enforces the discrimination of the fuzzy positive assigns with the rest negative labels to facilitate more reliable semantic generalization.

Realized in a plug-and-play manner



Method------ Fuzzy Positive Assignment (FPA)

How to allocate K candidate labels?

a. Set upper probability threshold T, get each pixel’s prediction

Train Bus Building Truck Car --- Road Person

b. Sort all probability values from large to small: p;, p,, ps, ..., Pc
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c. Record the first n value that satisfies the cumulative probability greater than T,: p;#p,+...+p,>=T,
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d. K=max(n-1, 1) = 3



Method------ Fuzzy Positive Regularization (FPR)

How two learn the segmentation task with multiple labels?

min (z,,) > max (2,).

Fuzzy Positive Regularization (Sec. 3.3)
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Note that the classical cross entropy loss is a special case of FPR when K=1.



Experiments--——---Quantitative experiment

Method ResNet 50 ResNet 101
1/32 (93) 1/16 (186) 1/8 (372) 1/4 (744) 1/32 (93) 1/16 (186) 1/8 (372) 1/4 (744)

MT [40] . 66.14 72.03 74.47 . 68.08 BT 76.53
CCT [34] - 66.35 72.46 75.68 - 69.64 74.48 76.35
GCT[17] . 65.81 71.33 75.30 . 66.90 72.96 76.45
U2PL [43] . . . - . 74.90 76.48 78.51
CPS w/o cutmix [5] 54.40 68.68 73.06 75.75 59.70 71.22 74.98 77.45
FPL+CPS w/o cutmix | 55.77(11.37) 69.71(11.03) 74.43(11.37) 76.76(11.01) | 61.00(11.30) 72.05(10.83) 75.67(10.69) 77.57(10.12)
CPS w/ cutmix' [5] 71.33 74.05 76.92 77.77 72.51 74.72 77.62 78.93
FPL+CPS w/ cutmix | 72.39(11.06) 74.80(10.75) 77.32(10.40) 78.53(10.76) | 73.20(10.69) 75.74(11.02) 78.47(10.85) 79.19(10.26)
AELT [14] 68.39 74.03 75.83 76.18 73.00 75.26 78.07 78.26
FPL+AEL 71.21(12.82) 74.54(10.51) 76.25(10.42) 76.88(10.70) | 75.01(12.01) 76.58(11.32) 78.19(10.12) 78.46(70.20)

Table 1. The mIoU on Cityscapes. Results marked by { are reproduced in the same experimental environment as FPL.

Method ResNet 50 ResNet 101
1/16 (662) 1/8 (1323) 1/4 (2646) 1/16 (662) 1/8 (1323) 1/4 (2646)

MT [40] 66.77 70.78 73.22 70.59 73.20 76.62
CCT [34] 65.22 70.87 73.43 67.94 73.00 76.17
CutMix-Seg [ ] 68.90 70.70 72.46 72.56 72.69 74.25
GCT [17] 64.05 70.47 73.45 69.77 73.30 123
CAC [2]] 70.10 72.40 74.00 72.40 74.60 76.30
CPS w/o cutmix' [5] 68.13 72.79 74.24 72.50 74.97 77.14
FPL+CPS w/o cutmix 68.67(170.54) 73.03(10.36) 74.80(10.56) 73.18(170.68) 75.74(10.77) 77.47(10.33)
CPS w/ cutmix’ [5] 71.78 73.44 74.90 74.48 76.44 77.68
FPL+CPS w/ cutmix 72.52(10.74) 73.74(10.30) 75.35(10.45) 74.98(10.50) 77.75(11.31) 78.30(10.62)
AELT [14] 69.93 7317 75.50 74.20 76.58 77.98
FPL+AEL 71.01(11.08) 73.69(10.52) 76.61(T1.11) 74.98(10.78) 76.73(10.15) 78.35(10.37)

Table 2. The mIoU on VOC2012. Results marked by f are reproduced in the same experimental environment as FPL.



Justification------ Positive Gradient Score

An analysis using positive gradient score:
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We can split all pixels into 3 cases:

Case 1. The pseudo label is correct, that is,
the GT is the top-1 predicted category.
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Case 2. The top-1 prediction is wrong, but the GT is in
the categories with top-K probabilities.
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Case 3. The pseudo label is wrong, and the GT is also
outside the fuzzy positive labels
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Justification------ Positive Gradient Score

(a) Samples of positive gradient score (R)
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(b) Statistical value of positive gradient score (R)
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