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Our approach SPARF: A joint pose-NeRF training strategy

Goal: Novel-view synthesis from few images with noisy camera poses
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SPARF in more details




NeRFs in the sparse-view setting
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NeRFs in the sparse-view setting

Works that try to improve this
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They all assume gro truth poses as input

This is an unrealistic assumption!
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NeRFs in the noisy-input-poses setting

Input

How do we get the input poses?

We should assume access to only noisy

camera poses as input!

Works that train a NeRF
from noisy input poses + ﬁ Noisy camera poses A\

BARF (ICCV 2021) + Follow-ups ‘ BARF
SCNeRF (ICCV 2021)

They all assume@hse input views

They fail with sparse input views




Our approach SPARF
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SPARF: Multi-view correspondence loss

Pre-trained
Correspondence
network

PDCNet (Truong et al.
CVPR 2021)

Sparse input images




SPARF: Multi-view correspondence loss
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SPARF: Multi-view correspondence loss

surface
World frame

Enforces convergence to
global and geometrically
accurate solution

Camera pose

GT poses S
Enforces rendered depth to
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SPARF: Depth consistency loss
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Enforces the learned scene
to be rendered consistently
from any viewing direction



Results: Experimental set-up

o Evaluation on multiple datasets: object-centered, forward-facing scenes, indoor scenes.
e Sparse-view scenario: only 3 available.
o Different ‘noisy poses’ initializations.

Poses obtained
¢ SPARF = State-of-the-art by COLMAP

Synthetically perturbed |dentity poses

ground-truth poses with /
Gaussian noise \

DTU dataset LLFF dataset Replica dataset
(DTU Informatics 2010, Aanaes et al.) (BMVA 2021, Shafiei et al.) (2019, Straub et al.)




Results on DTU - 3 input views and noisy camera poses
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Thank you!
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