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Motivation: Anomaly in Chest X-rays

Anomaly Detection in Chest Anatomy
(radiography images)

Anomaly Detection in Textures and Objects
(photography images)

Anomaly Detection in Crowded Scenes 
(photography images)

Normal Abnormal
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Motivation: Unique Characteristics for Chest X-rays

Radiography images
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Motivation: Unique Characteristics for Chest X-rays

Radiography images

Photography images

Consistent shapes/appearances and fixed poses.
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Methodology: Space-aware Memory
Memory Matrix Similarity

MemAE (Baseline)
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Methodology: Space-aware Memory
Memory Matrix Similarity

MemAE (Baseline)

Ours
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Methodology: Memory Queue

Memory Matrix

MemAE (Baseline)

Encoding Decoding

- Learnable Matrix
- Different feature dist.

semantic
gap

(Learned feature basis)
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Methodology: Memory Queue

Memory Matrix

Memory Matrix

MemAE (Baseline)

Ours

Encoding Decoding

Encoding Decoding

- Learnable Matrix
- Different feature dist.

- Non-Learnable Matrix
- Identical feature dist.

How to prove?

semantic
gap

NO
GAP !

(Learned feature basis)

(Copied training features)
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Methodology: Memory Queue

t-SNE feature visualizations
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Methodology: Memory Queue

How to copy and paste? 

- Memory matrix needs to be 
updated with most recent features.

- Refresh the entire matrix at every 
training step is inefficient.
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Methodology: Memory Queue

Memory Queue Processing

#step

Memory
pointer

step 0
(initialization)

Input feature

step 1 step 2 step 3 step 4

- First-in-first-out updating rule.
- Small learning rate helps.
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Methodology: UAD as Feature-Space In-painting

?

Given the contextual 
information

What does a normal 
patch look like?

Pixel-Space In-painting

?

Feature-Space In-painting

Encoding
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Methodology: UAD as Feature-Space In-painting

…

- Sliding window to traverse all patches
- Zero padding for out-of-range patches
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Transform
er

Query

Key

Value

In-painted
output

Methodology: UAD as Feature-Space In-painting
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Methodology: 🦑 SQUID 🦑
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Methodology: Creation of DigitAnatomy

Chest Anatomy Digit Anatomy

Characteristics
- Consistent shape
- Fixed pose

Benefits
- Intuitive demos
- Easy development/debug
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Results: Interpretations on DigitAnatomy

Normal

Novel digits

Missing digits

Disorder digits

Flipped digits

Input Ours Ganomaly MemAE



The University of Sydney Page 21

Results: Public Benchmarks

Quantitative Eval.

- AUC, Acc, F1 as 
metrics.

- Results of 3+ 
independent runs.

- >5%AUC imp. on 
ZhangLab.

- >9%AUC imp. on 
CheXpert.
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Results: Public Benchmarks

Qualitative Eval.

- Reconstructed normal images seem normal.
- Reconstructed abnormal images seem normal.
- Reconstructed normal/abnormal images have clear quality diff.
- High anomaly score (A) for abnormal images, low for normal images. 

AbnormalNormal
Input Reconst. GradCAM Input Reconst. GradCAM



The University of Sydney Page 23

Results: True UAD Training

- Training dataset contains 
unknown data 
(normal/abnormal mixture).

- UAD algorithms should be 
robust to the mixed training.

- SQUID (red plots) yields the 
best robustness when the 
normal sample ratio >=60%.
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Conclusion

– Reformulated UAD as feature-space in-painting.

– Proposed Space-aware Memory Queue that caters to the unique characteristics of 
chest radiography.

– Designed multiple functional modules: Gumbel Shrinkage, Masked Shortcut, 
Anomaly discrimination that have never been explored in the UAD domain.

– Created the DigitAnatomy dataset to assist algorithm design in this domain.

– Achieved SOTA performances on three public benchmarks.

– Evaluated methods under the real UAD training settings for the first time.
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Thank you!


