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Background & Motivation

Deep neural networks (DNNs) excel in computer vision tasks but are susceptible to
input perturbations. The trade-off between natural accuracy and robustness remains
a challenge, even for Vision Transformers (ViTs), which inherently exhibit
robustness.

To address this, we propose TORA-ViTs, leveraging pretrained ViT models for both
accuracy and robustness. TORA-ViTs comprise accuracy and robustness adapters,
alongside a gated fusion module that balances the trade-off. Experimental results on
ImageNet demonstrate that TORA-ViTs significantly enhance robustness while
maintaining competitive accuracy.
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Preliminary

The common supervised training objective of vision transformers can be written as:
Lacc(f; D) = Exyy~p[fce(f (2), )]

Adversarial training is a common method to improve adversarial robustness, which

can be formulated as a min-max problem:
Lrop(f;D) = Exy)~p [x max {JCE(f(x'),Y)],

"€Bp (x,€)

where B, (x, &) = {x': |lx — x'||,, < €} is a L, ball.
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The Architecture of TORA-ViITs

The architecture of TORA-ViTs consists of two
major components:

1)a pair of adapters, including an accuracy
adapter ,,(-) for extracting predictive
features and a robust adapter vy, ,(-) for
extracting robust features, and

2)a gated fusion module ¢,;(:,-) for combining
those features as inputs for the next ViT block.

These components are inserted after the MLP
layer in each ViT block.
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Attention-based Gated Fusion

To combine the predictive and robust features
extracted by the accuracy and robustness
adapters in a trade-off-aware manner, we
propose an attention-based gated fusion mod-
ule. We first calculate the dot-product attention
score matrices between the features from the ViT
blocks and adapters. Then, a softmax function is
applied adapter-wise to the score matrices. The
softmax results are used as a weighted gate to
fuse the predictive and robust features.
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The softmax function in a
normal attention module.

The softmax function in H The softmax function in our
AdapterFusion. ' method.

(b) Comparison of various methods to apply the softmax function in the
attention mechanism.



Trade-off Training
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Add [ACC]/[ROB] tokens:
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a, = l/}A,l (Concat([ACC]l—l'Zl,2:,:))

ry = g, (Concat([ROBl;_1, 7,5..))

Make prediction:

=

= =facc([ACC],) + = fROB([ROB] )
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Trade-off Training

CVP il

CANADA
Two-Phase Trade-off Training

Phase 1. Independent training:

min Lgog(F; D)
R ®

Iin Lacc(F;D)
{p)|1 <1< LY.
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where F = {f, Wg, W, @}, with W ={yp,|1<i<L}, Yy={yyli<i<L}, @o=
Phase 2. Joint training:

m(gn A LROB(F; D) + (1 - A)LACC (F, D)
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Experiments

Categories | Models Clean Attacks ImageNet Variants
FGSM PGD | A R C()

ResNet-50 [13] 760 | 122 09 | 00 361 767

oNNe | ResNeXt50-32xdd [52] 798 | 347 135 | 107 415 647

S| EfficientNet-B4 [46] 830 | 446 185|263 471 711
ConyNeXt-B [30] 838 | - - | 367 513 468

ANT [43] 760 | 178 31 | L1 390 630

Robust | AugMix [16] 775 | 202 38 | 38 410 653
o | Debiased CNN [27] 769 | 204 55 | 35 408 675
DeepAugment [14] 75.8 27.1 9.5 39 46.7 53.6

1. Performance on |mageNet—1 K and Anti-Aliased CNN [5¢] 793 | 329 135 | 82 4Ll 681
variants (Ima eNet-A/R/C) VIT-B/16 [0] 78 | - - [ 80 271 748
g VIT-B/16 + CutMix (6] 755 | - - | 148 285 64
VIT-B/16 + MixUp [6] 78 | - - 122 349 618

VIT-B/16 + AugReg [44] 799 | - - s 382 s2s
VIT-B/16-384 + AugReg [+4] T | 814 | - - | 262 382 582

ViTs | PVT-Large [51] 817 | 331 73 | 266 427 598
ConViT-B [7] 824 | 454 208 | 290 484 469

DeiT-B/16 [47] 820 | 464 213 274 449 485
T2T-ViT 24 [56] 826 | 467 175 | 289 479 480

Swin-B [20] 834 | 492 213 | 358 466 544

PIT-B [15] 824 | 493 237 | 339 437 482

PyramidAT [10] 817 | - - 230 477 450
PyramidAT-384 [10] 1 833 | - - | 364 467 478

Robust | RVT-B [34] 825 | 523 274 | 277 482 473
VITs | RVE-B* [34] 827 | 530 299 | 285 487 4638
MAE-ViT-B [12] 836 | - - | 359 483 517

FAN-L-VIT [60] 839 | - - |32 s31 433

Robust | TORA-VIT-B/I6 (\=0.1) | 841 | 484 233 | 465 57.6 317
Adapters | TORA-VIT-B/16 (A = 0.5) 837 | 547 380 | 392 563 344
(ours) | TORA-VIT-B/16 (A = 0.9) 803 | 742 575|222 537 416

The University of Sydney



JUNE 18-22, 2023 & [l ﬁ
CVPR VANCOU ER CANADA

Attacks ImageNet Variants
FGSM PGD A R c)
Acc. | 84.15 | 4796 22.08 | 45.75 56.79 32.61
0.1 | Rob. | 83.89 | 48.54 24.89 | 46.33 57.38 31.89
Joint | 84.10 | 4844 2326 | 46.73 57.64 31.69

Acc. | 83.79 | 5042 3242 | 42.05 56.17 33.77

_ .y . . Joint | 84.03 | 51.85 33.84 | 4245 56.72 3291
JOInt predICtlon with dlﬁerent A. Acc. | 83.38 | 5341 36.58 | 3893 5580 3529

0.5 | Rob. | 83.01 | 56.19 39.78 | 38.85 56.12 34.73
Joint | 83.66 | 54.75 37.99 | 39.23 56.27 34.44
Acc. | 80.80 | 63.70 49.89 | 23.64 54.09 42.27
0.7 | Rob. | 80.37 | 67.37 5223 | 23.59 54.04 42.13
Joint | 81.11 | 65.75 50.99 | 23.68 54.29 41.55
Acc. | 80.66 | 70.02 56.10 | 22.69 53.64 42.30
09 | Rob. | 80.04 | 74.24 58.34 | 22.37 53.39 4211
Joint | 80.34 | 74.19 57.50 | 22.21 53.67 41.56

Experiments

A | Head | Clean
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Experiments

3. Comparison of different tuning methods
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. FLOPs Params GPU Attacks ImageNet Variants

A | Tuning Clean
(©) (M) Hours FGSM PGD | A R C(|)
Head only 17.6 88.1 15.55 | 80.2 41.1 155 | 221 420 569
01 Single adapter 17.8 88.3 15.55 | 825 409 151 | 369 483 462
" | AdapterFusion | 24.9 111.2 19.63 | 822 462 22.6 | 364 522 355
TORA-ViT 26.0 1112 19.82 | 84.1 484 233 | 465 57.6 317
Head only 17.6 88.1 15.55 | 79.0 420 163 | 129 402 625
0.9 Single adapter 17.8 88.3 1555 | 723 53.1 30.1 | 3.1 214 787
" | AdapterFusion | 24.9 111.2 19.69 | 79.5 662 553 | 204 517 429
TORA-ViT 26.0 111.2 19.83 | 803 742 575 | 222 537 416




Visualization of Attention Maps

The visualization shows the attentions for
different adapters in the gated fusion module
with various ratios (1). A color map ranging
from blue to white to red is used, where red
indicates high attention and blue indicates
low attention.

It is evident that the features generated by
the accuracy adapter prioritize context, while
the features produced by the robustness
adapter concentrate on the main object to be
classified. This observation aligns with the
theory of robust non-predictive and predictive
non-robust features.
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Thank you!
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