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We often make two-hand interactions in our daily life




3D Interacting Hands Recovery in the Wild

e Most existing works only have focused on results on MoCap datasets, such as InterHand2.6M [1]
e They have 3D data, but have severe appearance domain gap from in-the-wild images

limited backgrounds/lightings with 3D GT diverse backgrounds/lightings without 3D GT

Images from InterHand2.6M -. In-the-wild images

[1] Moon, Gyeongsik, et al. "Interhand2.6M: A dataset and baseline for 3D interacting hand pose estimation from a single RGB image." ECCV, 2020.



3D Interacting Hands Recovery in the Wild

How can we recover 3D interacting hands from in-the-wild images without 3D GT from them?
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Two Sub-Problems of 3D Interacting Hands Recovery
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1st Sub-Problem: 3D Recovery of Each Hand
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1st Sub-Problem: 3D Recovery of Each Hand
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We bring inputs to a shared 2D scale space!
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2nd Sub-Problem: 3D Relative Translation between Two Hands
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3D relative translation between two hands -
Hard to be weakly supervised

e 3D relative translation between two hands are not restricted at all
e On the other hand, each 3D hand is restricted by a 3D hand model (e.g., size is about 15 cm)
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The failure case of the 2D-based weak supervision
for the 3D relative translation between two hands



Just remove the weak supervision?
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Without the weak supervision,
In-the-wild samples are not
exposed to the regressor

A regressor trained only on
MoCap images would not
generalize to in-the-wild images!



We bring inputs to a shared appearance-invariant space!
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Remove the weak supervision
Generalize well to in-the-wild data



Overall Pipeline

e SHNet: takes a single hand image for the 3D mesh of each hand - shared 2D scale space

e TransNet: takes 2.5D pose of two hands for the 3D relative translation - shared appearance-invariant
space
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Ablation Studies

Taking a single-hand image gives lower 3D errors of SHNet

Inputs of SHNet HIC [ ] IH2.6M [ ]
Two-hand image 29.80/35.86 11.36/13.20
Single-hand image (Ours) 15.65/15.70 11.12/13.01

Taking a 2.5D pose gives better generalization power
Weak supervision is always bad for any input types of TransNet

Inputs of TransNet weak sup. HIC [ ] IH2.6M [ ]
fisi X 206.83 27.67
& v/ 21535 35.72
X 54.36 27.19
Img. + 2.5D hm. / 58 53 33.15
X 38.64 31.51
2D hm. v 51.19 35.51
X(Ours) 31.35 29.29
2.5D hm. v 61.05 3391




Comparison to State-Of-The-Art Methods

HIC: indoor images with more realistic image appearances than IH2.6M, but with small scale and limited poses
Better generalization to in-the-wild images

Methods HIC [ 7] [H2.6M [ ]
MPVPE  MRRPE MPVPE  MRRPE
IHMR ["7] 30.76 / 46.38  119.64 | 15.35/18.53  33.39

Zhang etal. ['0] | 23.53/31.79
IntagHand [ ©] 18.83/27.31
InterWild (Ours) | 15.65/15.70

110.25 | 11.76 /14.17  31.56
5246 | 11.18/13.49 2931
31.35 | 11.12/13.01  29.29
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