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Introduction

Human Mesh Recovery (HMR) which can estimate 3D human
pose and shape of the entire human body has drawn increasing attention.

Recently, the attention mechanism in transformer demonstrates a strong ability
to model global dependencies in comparison to the CNN.

SOTA HMR methods all utilize transformer to exploit non-local relations
among different human body parts for achieving impressive performance.



Introduction

However, one significant limitation of these SOTA HMR methods 1s model
efficiency.

* The large CNN backbones are needed for to extract features first.

* Computational and memory expensive transformer architectures are applied
to process the extracted features for the HMR task.

Mainly pursuing higher accuracy is not an optimal solution



Lightweight attention design: Pooling Attention Transformer (PAT)
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(e.g. ViT, Swin) (e.g. MLP-Mixer) comparison of each block

Signidicantly reduce the Params and MACs significantly while maintaining high performance.
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Architecture design for HMR task
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(a) ViT style framework: number of patches is fixed during each block
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(b) Swin style framework: number of patches from large to small, need extra Feature Pyramid Network (FPN)
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(¢) POTTER: maintains high-resolution while capturing both local and global correlations for HMR



Overview of POTTER
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Figure 1. HMR performance comparison with Params and MACs

on 3DPW dataset. We outperform SOTA methods METRO [ %]
and FastMETRO [*] with much fewer Params and MACs. PA-
MPIJPE is the Procrustes Alignment Mean Per Joint Position Error.



Overview of POTTER
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Figure 4. The overall architecture of our POTTER. PAT is our proposed Pooling Attention Transformer block. The basic stream of
POTTER adopts hierarchical architecture with 4 stages [21]. where the number of patches is gradually reduced for capturing more global
. Our proposed HR stream maintains the high-resolution (% X %} feature representation
at each stage. The global features from the basic stream are fused with the local features by patch split blocks in the HR stream. Thus, the
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high-resolution local and global features are utilized for the HMR task.
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Experiment Results

Table 2. 3D Pose and Mesh performance comparison with SOTA methods on Human3.6M and 3DPW datasets. FastMETRO-S and
FastMETRO-L are the FastMETRO using the small transformer encoder and large transformer encoder, respectively. * indicates that
HybrIK uses ResNet34 as the backbone and with predicted camera parameters.

Human3.6M 3DPW
Model Year Params(M) Macs(G) | MPJPE| PA-MPIJPE | | MPJPE| PA-MPIPE| MPVE |

HMR [Y] CVPR 2018 - - 88.0 56.8 130.0 167 -
GraphCMR [ 14] CVPR 2019 - - - 50.1 - 70.2 -

SPIN [13] ICCV 2019 - - 62.5 41.1 96.9 59.2 116.4

VIBE [ 12] CVPR 2020 - - 65.6 414 82.9 51.9 99.1
CNN-based [2L.MeshNet [27] ECCV 2020 140.5 36.6 w ) 41.1 93.2 57.7 -

' HybrIK* [ 16] CVPR2021 27.6 127 573 36.2 75.3 45.2 87.9
ProHMR | 7] ICCV 2021 - - - 41.2 - 59.8 -

PyMAF [412] ICCV 2021 45.2 10.6 817 40.5 092.8 58.9 110.1

DSR [7] ICCV 2021 - - 60.9 40.3 85.7 517 09.5

OCHMR [ 10] CVPR 2022 - - - - 89.7 58.3 107.1

METRO [ 1 7] CVPR 2021 229.2 56.6 54.0 36.7 77.1 47.9 88.2

SoUT—— GTRS [44] ACM MM 2022 715 3. 64.3 454 88.5 58.9 106.2
—h-ase d TCFormer [41] CVPR 2022 - - 62.9 42.8 80.6 49.3 -

FastMETRO-S [ 1] ECCV 2022 32.7 8.9 57.7 394 79.6 49.3 91.9

FastMETRO-L [ 7] ECCV 2022 48.5 11.8 53.9 37.3 77.9 48.3 90.6

POTTER 16.3 7.8 56.5 35.1 75.0 44.8 87.4




Qualitative comparison with SOTA method METRO (in-the-wild images)




Generalization to 3D Hand Reconstruction
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Figure 14. Qualitative results of our POTTER for reconstructing hand mesh.



Thanks for watching!



