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@ CLIP has powerful zero-shot classification ability! @ How to directly extend CLIP from image to pixel-level in
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@ Contribution
v 'We propose an efficient one-stage straightforward paradigm based on CLIP;
v' We transfer the CLIP’s image-level classification ability to dense prediction tasks while maintaining the

advanced zero-shot knowledge;

v" We figure out three designs to achieve competitive results on seen classes while extremely improving the
performance on novel classes;

v Our method demonstrates superior performance, outperforming the state-of-the-art methods by a large margin
under both “inductive” and “transductive” zero-shot settings on three public benchmark datasets.

v Compared with the two-stage method, our method has achieved a speedup of about 5 times faster durinf 7 ) |
inference and shows competitive generalization ability. h
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Review of previous zero-shot semantic segmentation methods based on CLIP

TIwo-stage Pipeline:

N queries Image Class Names
Proposal CLIP Image  CLIP Text » Stagel: Generate class-agnostic proposals;
Generator Encoder Encoder
| 7 | Stage2 » Stage 2: Feed the cropped regions to CLIP

o o f 1 f t' .
Proposal-level Classification or classilication

¥ 1 ] Advantage:
Semantic Masks Assembly Inherent zero-shot ability of CLIP.
v _
Loss Fix &’ Disadvantage:

Increase computational cost.

CLIP is still utilized for image-level classification.

@ How about directly extending CLIP for zero-shot dense prediction? -



Motivation

Can we directly extend CLIP for zero-shot semantic segmentation?

Class Names

y

CLIP Text
Encoder

Image

v

CLIP Image

Encloder

\’
Text-patch

Matching Decoder

l

Loss

One-stage Pipeline:
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» Obtain text and patch embeddings;
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» Generate semantic predictions by matching them in the decoder.
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Motivation

Can we directly extend CLIP for zero-shot semantic segmentation?
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@ Observation & Challenges:
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! Using the original CLIP for semantic segmentation:

75.9

89.9

91.9

Insufficient visual presentation due to CLIP is only pretrained on image-level;

! Finetuning CLIP image encoder on base dataset:

Better performance on seen classes but leads to overbias problem in zero-shot;

? How to extend CLIP into zero-shot segmentation?
We propose efficient designs to adapt CLIP’s ability from image to pixel-ge\
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» Design 1: Deep Prompt Tuning (DPT) instead of fine-tuning or fixing for the CLIP image encode.

» Design 2: Applying Non-mutually Exclusive Loss (NEL) instead of Mutually Exclusive Loss.

» Design 3: Introducing Relationship Descriptor (RD) to incorporate the image-level prior into text embedding before
matching text-patch embeddings from CLIP in decoder:

Annotations of seen classes upsampling* argmax € R
P e - B
tr nseen
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» Design 1: Deep Prompt Tuning (DPT) » Design 2: Non-mutually Exclusive Loss (NEL)
Fixing or Fine-tuning CrossEntropy(Softmax(.))
VS. V.S.
Deep Prompt Tuning BinaryCrossEntropy(Sigmoid(.))
[cls] token +E@D > @ > @ > @ £ hw
@0 Patch embeddings o G e 1 . ~
Position embeddings : Efocal = 1 1 yz Xylog(yz)+y7 X (l_yz)log(l_yz)a
] Lem:able promptsg @ —»i = @—) Q @’3@—) o h Z=:
CLIP image encoder = 2 & - 2 §, (4)
s 3 @ 37 25 vl
- - =) — v - - ‘Cdice =1- hw : hw 9”7 (5)
LS ==:=: =:= o
.-ﬂ’> - R fadt ; o —— ; ™ E L, L=a-Liocal + B Laices (6)
.n. - - - - where 4 = 2 balances hard and easy samples and {a, 3}
o — — R are coefficients to combine focal loss and dice loss.
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» Design 3: Relationship Descriptor

Table 4. Effect of different formats of text queries £.
dim | formatoft | pAcc mlIoU(S) mloU(U) hIoU

s = Class embeddings t 868  89.5 337 490

poope CLIP Text tog 93.1 90.2 68.4 77.8

S Encoder ' ' ' ' 512 it-g| 924 906 642  75.1
. t-g 88.7 879 465  60.8

P el W Relationship " 8 ST 2 EA M L

3 Descriptor (RD) [t, g] 88.9 88.8 39.3 54.5

AL Subsec. 3.5 [tog,t] | 946 919 778 843
R A L = s1p%p | t-ght] 90.9 915 542  68.1
| A [tog, t+g] | 883  90.0 380 534

s okl ik [t+g, t] 82.8  89.4 20.7 33.6

[tog, Itg] | 941 912 739 816

512%3 | [tog, It-gl, t] | 93.4 916 673 716

V' dot product and absolute difference
X sum and concatenate operation

t

= concat[r, t| = concat[t ® g, t], (8)
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Differences between our approach and related zero-shot methods based on CLIP.

Methods Stages Need extra image encoder? CLIP as classifier? Can do inductive?
SimBase v v v
ZegFormer two v v v
MaskCLIP+ v X X
ZegCLIP one X X v
N queries Image Class Names Image Class Names Imilge Class i\lames
Proposal CLIP Image  CLIP Text A CLIPA T S L Deep CLIP Image CLIP Text
Generator Encoder Encoder SNy n5es A W Seer Prompts Encoderl Encpder
| | Encoder Encoder ** Unseen 7 ©
v Stage2 L 7 | Stagel Relationship Descriptor (RD)
Proposal-level Classification T |
| ext-patch v
v Matching Decoder Text-patch 2 Seen
Semantic Masks Assembly l Matchmg+ Decoder B Unseen
\/ - . Fix or Fine-tune ® Non-mutually
Loss X 058 Fix Exclusive Loss @ designs

(a) Related Two-Stage methods.

(b) Our Baseline: One-Stage method.

(c) ZegCLIP: Baseline with d?s‘ ns, |
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Benchmarks:

» PASCAL VOC 2012 contains 10,582 augmented images for training and 1,449 for validation. We also ignore the *background"
category and use 15 classes as the seen part and 5 classes as the unseen part.

» COCO-Stuff 164K is a large-scale dataset that contains 171 categories with 118,287 images for training and 5,000 for testing.
The whole dataset is divided into 156 seen classes and 15 unseen classes.

» PASCAL Context includes 60 classes with 4,996 for training and 5,104 for testing. The dataset is divided into 50 known classes
(including " "background") and the rest 10 classes as used as unseen classes in the test set.

Seen classes C° Unseen classes CY cSncl =09 Inference:

Per-pixel classicization on C° U CY
Training:

» Inductive: name of unseen classes are unavailable Evaluation Metrics:

Training images and ground truth of seen classes C5 > pAcc, mloU on both seen and unseen classes
» hloU among seen and unseen classes
» Transductive: name of unseen classes are available

hol — 2 x mIoU(S) * mIoU(U)
Training images, ground truth of seen classes C5 and name of unseen classes CY e (S) + mIoU(U)
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Comparison with the state-of-the-art methods on three public benchmark datasets:

Table 2. Comparison with the state-of-the-art methods on PASCAL VOC 2012, COCO-Stuff 164K, and PASCAL Context datasets. “ST”
represents applying self-training via generating pseudo labels on all unlabeled pixels, while “F4+“ST” denotes that pseudo labels are
merely annotated on unseen pixels excluding the ignore part.
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Methods PASCAL VOC 2012 COCO-Stuff 164K PASCAL Context
pAcc mloU(S) mloU(U) hloU | pAcc mloU(S) mloU(U) hloU | pAce mloU(S) mloU(U) hloU
Inductive
SPNet [44] - 78.0 15.6 26.1 - 35.2 8.7 14.0 - - - -
ZS3 [3] - 77.3 17.7 28.7 - 34.7 9.5 15.0 | 52.8 20.8 12.7 15.8
CaGNet [17] 80.7 78.4 26.6 39.7 | 56.6 33.5 12.2 18.2 - 24.1 18.5 21.2
SIGN [10] - 75.4 28.9 41.7 - 32.3 15.5 20.9 - - - -
Joint [1] - 77.7 32.5 45.9 - - - - - 33.0 14.9 20.5
ZegFormer [12] - 86.4 63.6 73.3 - 36.6 33.2 34.8 - - - -
zsseg [49] 90.0 83.5 72.5 77.5 | 60.3 39.3 36.3 37.8 - - - -
ZegCLIP (Ours) 94.6 91.9 77.8 84.3 | 62.0 40.2 414 40.8 | 76.2 46.0 54.6 49.9
Transductive
SPNet+ST [44] - 77.8 25.8 38.8 - 34.6 26.9 30.3 - - - -
7S5 [3] - 78.0 21.2 33.3 . 349 10.6 16.2 | 49.5 27.0 20.7 234
CaGNet+ST [17] 81.6 78.6 30.3 43.7 | 56.8 35.6 13.4 19.5 - - - -
STRICT [34] - 82.7 35.6 49.8 - 35.3 30.3 34.8 - - - -
zsseg+ST [49] 88.7 79.2 78.1 79.3 | 63.8 39.6 43.6 41.5 - - - -
ZegCLIP+ST (Ours) 95.1 91.8 82.2 86.7 | 68.8 40.6 54.8 46.6 | 77.2 46.6 65.4 54.4
TMaskCLIP+ [56] - 88.8 86.1 87.4 - 38.1 54.7 45.0 - 44 4 66.7 53.3
'|'ZegCLIP+ST (Ours) | 96.2 92.3 89.9 91.1 | 69.2 40.7 59.9 48.5 | 77.3 46.8 68.5 55.6 1 .
Fully Supervised L [2))

ZegCLIP (Ours) | 963 924 9.9 916 | 699  40.7 632 496 | 775 465 787 569 .
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Qualitative results on COCO-Stuff 164K:

VANCOUVER, CANADA

playingfield

(a) Image (b) Baseline-FT (c) Ours (ZegCLIP) (d) Ground truth

Figure 4. Qualitative results on COCO-Stuff 164K. (a) are the original testing images; (b) represent the performance of our proposed < D>>
one-stage baseline (fine-tuning the image encoder); (c) are the visualization results of our proposed ZegCLIP; (d) are the ground truths of
each image. Note that the white and tags represent seen and unseen classes separately.
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Ablation Study

Effectiveness of our proposed designs:
Table 5. Quantitative results on VOC and COCO dataset to demonstrate the effectiveness of our proposed three designs.

— PASCAL VOC 2012 COCO-Stuff 164K
pAcc mloU(S) mloU(U) hloU | pAce mloU(S) mloU(U) hloU
Baseline-Fix 69.3 71.1 16.3 26.5 333 17.1 154 16.2
Baseline-Fix + NEL 85.5 85.2 36.6 51.2 52.4 31.7 20.8 25.1
Baseline-Fix + RD 86.0 82.5 46.6 59.6 41.0 23.3 234 233
Baseline-Fix + NEL + RD 89.6 83.3 66.4 73.9 53.7 32.3 32.5 32.4
Baseline-FT 77.3 76.5 13.8 23.4 48.4 324 17.5 22.7
Baseline-FT + NEL 83.8 84.1 27.5 41.4 56.5 39.9 254 31.0
Baseline-FT + RD 79.4 77.8 20.7 32.7 54.0 39.6 22.4 28.6
Baseline-FT + NEL + RD 89.6 90.2 42.4 57.7 60.2 42.7 22.3 29.3
Baseline-DPT 76.2 75.9 28.3 41.2 39.0 22.5 17.5 19.7
Baseline-DPT + NEL 89.2 89.9 40.4 55.7 58.5 38.0 274 31.8
Baseline-DPT + RD 85.5 81.0 55.2 65.7 46.4 28.4 27.8 28.1
Baseline-DPT + NEL + RD (ZegCLIP) | 94.6 91.9 77.8 84.3 62.0 40.2 414 40.8
80
R 60 | % %
% 40 ;//// g//:% /} //
cow gir affe ml‘a’ fr lébe uh"‘" carto! scissO” # ﬂ?"‘" ¢ l"“db gr a<> ul&atle rive! roud v dl conc? e
~ Basline-Fix+NEL+RD m Baslme FT+NEL+RD 0 Baslme-DP’l‘-i-NEIA-RD (ZegCLIP) ® Basline-DPT+NEL+RD (Zeg\C(LlP) +ST

Figure 5. Detailed performance on unseen classes of COCO datasets. Note that “ST” represents self-training in “transductive” setting.

Efficiency comparison:
Table 3. Efficiency comparison with different metrics. All mod-

Generalization ability:
Table 7. Generalization ability to other datasets.

els are evaluated on a single 1080Ti GPU. #Params represents the source | target method PAcc mloU mAcc
number of learnable parameters in the whole framework. Zegformer [12] | 568 361  64.0
Datasets _ Methods | #Params(M) | Flops(G) |, FPS 1 Context | =~ ZegCLIP 609 412 684
voc  ZegFormer [17] 60.3 18293 1.7 COCO TZegCLIP+ST | 684 458 709 RN
ZegCLIP 13.8 110.4 9.0 Zegformer [12] | 92.8 85.6 92.7
CoCo ZegFormer [12] 60.3 1875.1 1.5 VOC ZegCLIP 96.9 93.6 96.4
ZegCLIP 14.6 123.9 6.7 TZegCLIP+ST | 972 941  96.7




Ablation Study

Effect of using advanced loss function:

Table 6. Comparison of introducing advanced loss function. Note
that “plain” represents merely Binary Cross Entropy (BCE), while
“plus” means adding focal loss on BCE and dice loss

dataset loss | pAcc mloU(S) mloU(U) hloU
voc | plain | 934 897 736 809
plus | 946 919 778 843

fain | 598 3838 390 389

coco | Tie | 620 202 414 408
Context | PR | 753 435 500 465
plus | 762  46.0 546 499

Effect of number of deep prompt tokens:

95

91.9

91.7

90.3 __—ca- 2L 22

85

10

20
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Effect of single and multiple text templates:

Table 9. Comparison of using single and multiple templates on

COCO-Stuff 164K and PASCAL Context datasets.

dataset | template | pAcc mloU(S) mloU(U) hloU
single 61.4 39.5 40.6 40.0
coco multiple | 62.0 40.2 41.4 40.8
single 75.8 45.1 52.1 48.3
Context | ultiple | 762 460 546 499

Effect of depth of deep prompt tokens:

——VOC (U)
-==VOC (S)
—COCO (U)
=== COCO (S)
—— Context (U)
=== Context (S)

35

100 200

Number of the deep prompt tokens

Table 8. Effect of the depth of deep prompt tuning on VOC.

layer | pAcc mloU(S) mloU(U) hloU
1 91.4 87.5 67.8 76.4
1—3 91.7 86.7 70.2 77.6
1—6 92.7 87.8 75.3 81.1
1—9 93.3 88.9 72.4 79.8
1—-12 | 94.6 91.9 77.8 84.3
10—12 | 925 88.3 70.9 78.6 /
7—12 | 925 89.0 68.0 7L )
4—12 | 93.6 91.5 66.9 77.3 N
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v" Successfully extending CLIP into zero-shot semantic segmentation with one-stage straight-forward
paradigm.

v' Three simple-but-effective designs to achieve competitive results on seen classes while extremely
improving performance on novel classes.

v Flexible text queries to handle both “inductive” and “transductive” settings.

v' 5 times faster inference compared with two-stage methods.
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