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Challenges:
● Reconstruction deteriorates with higher compression.
● Features of the middle and higher frequency spectrum are least recoverable.

Contributions:
● New model Frequency Augmented VAE (FA-VAE) for more accurate details 

reconstruction.
● New losses Spectrum Loss (SL) and Dynamic Spectrum Loss (DSL) for 

learning features of different low/high frequency mixtures.
● New Cross-attention Autoregressive Transformer (CAT) for text-to-image 

generation with enhanced attention mechanism.

Results:
● FA-VAE improves reconstruction for various compression rates on several 

benchmarks.
○ CelebA-HQ, FFHQ, ImageNet

● CAT yields better generation quality for T2I synthesis.

Summary

original baseline ours
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Motivation
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● With higher compression rate, harder to reconstruct accurately images.
● Features towards middle and higher frequency spectrum are least recoverable.
● Existing reconstruction models tend to ignore alignment on the frequency spectrum.



FA-VAE
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● Frequency Augmented VAE (FA-VAE) learns to complement the reconstructed images with missing 
features of important frequencies.



Focal Frequency Loss (FFL)
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● Focal Frequency Loss (FFL) penalizes the hard frequencies.

encoder activations decoder activations weights frequency distance  

○ weights: 

○ frequency distance: 

○ Discrete Fourier Transform (DFT): 

Noise due to overemphasis on 
the higher frequency 
spectrum



Spectrum Loss (SL)

● Penalizes more mismatch in the lower frequency spectrum
○ Because they define the image content

● Diminish the weights towards higher frequency spectrum
○ Details they contain the details

● Apply Gaussian kernels on the activations

● Spectrum Loss (SL) is defined as: 
Gaussian Kernels

Better reconstruction on the lower spectrum, 
checkerboard artifacts due to fixed 
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Dynamic Spectrum Loss (DSL)

● Optimize the variances       instead static.
○ Dynamically adjust to different amounts of frequencies 

needed.
●       are model parameters and optimized as:

 

○      is the reconstruction loss
○    is the quantization loss

Good balance between low and high frequencies,
No checkerboard artifacts
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CAT for T2I
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● Cross-attention Autoregressive Transformer (CAT) for text-to-image (T2I) generation task.
○ Uses all token embeddings of a text description for more fine-grained guidance.
○ Embeds cross-attention mechanism to guide generation at each step.



Experiments - Reconstruction
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● FA-VAE gives better reconstruction on different compression rates.
● FA-VAE improves the reconstruction on the frequency spectrum.
● More results in the paper.



Experiments - Generation
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● CAT generates better images for text inputs on CelebA-HQ-MM dataset.
● Images look more realistic.
● More results in the paper.



Paper: https://arxiv.org/abs/2305.02541 

Code: https://xinmiaolin.github.io/ 
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