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Introduction

* Region of interest become smaller due to extreme ¢ Range between 16 X 16 to 32 X 32 pixels (Zou and Yuen
stand-off distance or broad viewing angle. 2011) [60].

* Training of a VLRFR model often suffers from limited meaningful identity-specific patterns.
* Further escalated due to ambiguous inter-class variations with perceptually similar identities.

* Same low-resolution and cross resolution matching.
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Motivation
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* A deep face model pretrained on high-resolution faces introduces a cluster of unrecognizable
indentities (Uls) ( ) [9] in the embedding space.

» Hard-to-recognize faces (red) from VLR dataset lie closely to these Uls, indicating their low
recognizability.



Goals

* Translate face recognizability into a measurable
indicator that closely matches human cognition.

* Improve the recognizability of hard-to-recognize
instances by pushing them away from the Uls center.
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Methodology
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* Accepts unrecognizable identities (Uls) and realistic low-resolution face datasets as inputs.

e Comprises 3 main modules.



Perceptibility Regression Module (PRM)

* Learns the recognizability index (RI) and predicts the quality for any face samples including the unseen ones.

Recognizability Index (RI), &
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where df , dfv are intra-class, inter-class proximity of L2-normalized
face embedding, v; with respect to its positive prototype and nearest
negative prototype.
|
;'] ' is the cosine distance between v; and average across normalized
Uls embedding.
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Index Diversion Loss

* To enhance the hard-to-recognize instances’ recognizability based on learned RI with respect to the
Uls.

 The diversion of the learned RI of each face in Z-score 1s defined as:
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where py; and oy denotes the mean and standard deviation recognizability index of Uls.

* The index diversion loss is then defined as: L;p = max(0, 7 — div)

where 7 is the confidence interval hyperparameter.
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Perceptibility-aware Attention Module (PAM)

* Embedding projection away from Uls cluster center is beneficial for model to highlight meaningful
features when face is obscure.
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Uy is L2-normalized average of Uls’ embedding.
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» Approximating Vi through PAM module using MSE loss as follows:
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The projection of embedding away from Uls
cluster can be deemed as RI-enhanced
embedding.

The projection guides the model to attend to
parts of embedding that represent the salient
facial features for recognizability.



Loss Computation

* For recognition module, the angular margin SoftMax loss (i.e. ArcFace) 1s chosen.

( )

Perceptibility-aware Attention Module MSE loss
Recognition Module Angular Margin Softmax Loss

Smooth L1 Loss

Perceptibility Regression Module
Index Diversion Loss

* The total loss computation is written as:

Ltotal — Lcls OéLLl BLID "YLMSE

where a, 8,y are the respective weighting factors for each loss.



Experiments

Very Low-Resolution Face Recognition Datasets:
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SurvFace

TinyFace



Performances in 3 VLR Datasets

Dataset Names

71.38% TinyFace 73.06% (+1.68)
[ ] Metric: Rank-1 _

97.89% ScFace 98.70% (+0.81)
[ | MemicRank-l (T

SurvF
77.48% Hrvrace 80.99% (+3.51)
Metric:
[ ] TPR@FAR(0.) ]
Best of current
VILRFR SoTAs SLSUYe T rprao@rPiR 03)  33-20% (+1.70)
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Ablation Analysis

Method Leis Lrp LysSE L1 Rank-1 IR (%)
Cross Entropy (2014) v 68.884
NormFace (2017) v 68.026
CosFace (2018) v 70.306
MV-Softmax (2020) v 70.547
CurricularFace (2020b) v 70.655
MagFace (2021) v 70.467
AdaFace (2022) v 70.359
Baseline (ArcFace) (2019) v 70.333
I v v 71.298
11 v v 71.540
111 v v 71.674
Ours v v v v 71.915

Direct elevation of
recognizability



Ablation Analysis

Method Lers Lrp LysSE L1 Rank-1 IR (%)
Cross Entropy (2014) v 68.884
NormFace (2017) v 68.026
CosFace (2018) v 70.306
MV-Softmax (2020) v 70.547
CurricularFace (2020b) v 70.655
MagFace (2021) v 70.467
AdaFace (2022) v 70.359
Baseline (ArcFace) (2019) v 70.333
I v v 71.298
11 v v 71.540
III v v 71.674
Ours v v v v 71.915

Attention on  embedding
projection away from Uls
cluster allows the model to
highlight salient regions within
a face.
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Ablation Analysis

Method Leis Lrp LysSE L1 Rank-1 IR (%)
Cross Entropy (2014) v 68.884
NormFace (2017) v 68.026
CosFace (2018) v 70.306
MV-Softmax (2020) v 70.547
CurricularFace (2020b) v 70.655
MagFace (2021) v 70.467
AdaFace (2022) v 70.359
Baseline (ArcFace) (2019) v 70.333
I v v 71.298
11 v v 71.540
111 v v 71.674
Ours v v v v 71.915

Simultaneously benefit from
recognizability-aware
embedding learning, which RI
can be viewed as model’s
confidence corresponding to
classifiability.



Recognizability Index

* Recognizability distribution of each face instance from TinyFace testing set is shown as follows:
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Error vs. Reject Curve (ERC)

* Generated upon verification + ratio of
unconsidered images.

* The portion of images to the left of
red line in the histogram will be

unconsidered for verification (FNMR
@ FMR) task.
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* The RI is a reliable metric for assessing recognizability, such that VLR faces that are more recognizable are
learned with higher RIs (and vice versa).
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