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Observations

• Unlike CNN-based models, Transformer architecture lacks inductive bias:
✔ captures long-range token dependencies
✘ data-hungry, easy to overfit to pre-trained datasets which are not large enough

• Overfitting to datasets with insufficiently training data may hurt the generalization ability 
of new classes (e.g., few-shot learning)

• Our problem settings: 
Transformers on small dataset under few-shot learning



Related Works
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Image source: modified from SupCon [1] 



Related Works

• Masked Image Modeling (MIM)

• Recovering masked pixels from a corrupted input image
• Combined with self-distillation achieves better performance [3]

Image source: modified from MAE [2] 
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Our Work
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To tackle the problem of Transformers on small dataset: 



Our Training & Few-Shot Evaluation Pipelines:
• Train on base classes:

• Our method defined in the next page

• Few-shot evaluation on novel classes:
• Prototype evaluation method
• N-way K-shot (e.g. 3-way 5-shot) 

Image source: modified from PAL [4] 



Our SMKD Framework (Global Knowledge Distillation)



Our SMKD Framework (Local Knowledge Distillation)

Finding dense correspondence of matched token pairs with highest similarities. 



Comparison with Self-Supervised / Supervised Contrastive Frameworks

✔ Avoids the need for negative examples (”dissimilarity”)



Comparison with Self-Supervised Knowledge Distillation Framework

✔ Introduces intra-class knowledge distillation to self-
supervised knowledge distillation framework



Dataset Description

• We test on four widely-used few-shot classification benchmark datasets:

Resolution #Images #Classes #Images per class (train, val, test) split

CIFAR-FS 32 × 32 60000 100 600 (64, 16, 20)

FC100 32 × 32 60000 100 600 (60, 20, 20)

mini-ImageNet 224 × 224 60000 100 600 (64, 16, 20)

tiered-ImageNet 224 × 224 779165 608 ≈1282 (351, 97, 160)

CIFAR-FS  ≈ FC100  ≤ mini-ImageNet  ≪ tiered-ImageNet

• Comparison of dataset size:



Visualizations



Comparison with SOTAs

• Our method with simple Prototype
and Linear Classifier evaluation 
methods could beat all models with 
CNN backbone.

• Our method grows more effective on 
datasets with smaller resolutions and 
fewer training images. 

• Our method, combined with tricks 
from HCT (spectral tokens pooling & 
small patch size), achieves a new 
SOTA on mini-ImageNet, CIFAR-FS, 
and FC100, and is comparable with 
current SOTA (HCTransformers) on 
tiered-ImageNet.



Thank you!

Any suggestions and comments are welcome! 
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