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Fairness Problem in Domain Adaptation
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The Performance of Segmentation Models
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Our FREDOM approach improves performance of the
minority group to promote fairness between classes



Motivation




Contributions

Present a novel Fairness metric between classes for semantic
segmentation

Propose new Fairness Domain Adaptation approach to Semantic
Segmentation
Promote fairness by a new fairness treatment loss from class distributions

Impose consistency of segmentation maps by a novel Conditional Structural
Constraint

Model Conditional Structural Constraint by the Conditional Structure
Network

Achieve State-of-the-Art Performance on Domain Adaptation
Benchmarks and Promote Fairness of the model predictions



Fairness Objective

0* = argminz
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Minimize the Difference of Error Rates Between Classes
So That the Model Behaves Fairly Between Classes




Fairness Objective
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Standard Unsupervised Domain Adaptation
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Fairness Objective

0" = argénin [IExS,375~qs(xs,375)Ls (:VS» ys) + [Ext~pt(xt)['t (Yt)]
— argmin@fLs(ySfys)QS(YS»ys)dYdes + th(Yt)pt(Yt)dYt



Why Does The UDA Model Behave Unfairly?
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Suffer Imbalance Distributions

The Class Distribution based on the Number of Pixels
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The Proposed Fairness Approach

0 = argming [Exs»JA’SNCIs(YSJA’s)LS (ys’ Vs

Ideal Distributions
Where the Learned Model Behave Fairly
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The Proposed Fairness Approach

0 = argming [Exs»JA’SNCIs(YSJA’s)LS (ys’ Vs

Ideal Distributions
Where the Learned Model Behave Fairly
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Standard Domain
Adaptation Loss
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The Proposed Fairness Approach

0 = argming [Exs»ys"’CIS(YSJA/S)LS (ys’ Vs

Ideal Distributions
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The Proposed Fairness Approach

0 = argming ]ExS'j}SNqS(yS»yS)LS (ysr 575

Ideal Distributions
Where the Learned Model Behave Fairly
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Conditional Structure Network

0 = —argmingk, o k. log g5 (ys\lb’sk)
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Solving by Pixel RNN (or Pixel CNN) is when N is a
large number

¥
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Learn the Conditional Structure Constraints By
the Multi-head Self-Attention Network




Conditional Structure Network




The Proposed FREDOM Framework

Minority Group
e.g., Tr.Light, Sign, Person
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Thank You For Watching



