
MobileNeRF: Exploiting the Polygon Rasterization Pipeline

for Efficient Neural Field Rendering on Mobile Architectures

Zhiqin Chen*

Simon Fraser University

Google Research

Thomas Funkhouser

Google Research

* Work done while at Google.

Andrea Tagliasacchi*

Simon Fraser University

Google Research

University of Toronto

Peter Hedman

Google Research

THU-AM-009



Chromebook

T-rex scene

1008x756, 20 FPS

Gaming laptop

Bicycle scene

1256x828, 187 FPS

iPhone XS

Ficus scene

800x800, 60FPS

Surface Pro 6

Garden scene

1256x828, 20 FPS



Triangle meshes as NeRF representation

> Compatibility:

All GPUs in modern devices 

can render triangles.

> Speed:

GPUs are optimized to 

render triangles fast.

Extracted

triangle mesh

by our method

Rendered image

by our method



Overview - rendering





Motivation - speed

Classic NeRF methods rely on volumetric rendering.

The figure is taken from SNeRG - Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021.

> Slow: for each pixel, many points need to be sampled 

along the ray and evaluated by the MLP.



Motivation - GPU memory

Recent NeRF methods speed up inference by “baking” 

the MLP evaluation results into sparse 3D voxel grids.

E.g., SNeRG, PlenOctrees.

[1] (SNeRG) Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021.

[2] PlenOctrees for Real-time Rendering of Neural Radiance Fields. Yu et al. ICCV 2021.

> Large: 3D textures or 3D structures have to be stored 

in GPU for fast accessing.



Motivation - compatibility

Most NeRF methods need cuda and high-end accelerators.

SNeRG PlenOctrees



Our method

We use textured triangle meshes as the NeRF representation.

> Compatibility: all GPUs in modern devices can render triangles.

> Speed: GPUs are optimized to render triangles fast.

> Memory: storing 2D textures consumes much less memory than storing 3D textures.



Extracted triangle mesh

by our method

Rendered image

by our method

Triangle meshes as NeRF representation





View dependent colors

> Store 8-d features instead of 3-d RGB colors in the texture image.

> Use a tiny MLP running in a GLSL fragment shader to produce the output color.



Training - stage 1



Initial grid mesh

1. Store a grid of vertices 2. Connect adjacent 

vertices to form faces



Training - stage 1



Training - stage 2

1. Binarization



Training - stage 2

1. Binarization

2. Supersampling

(for antialiasing)

*Actually, we average pixel features instead of pixel 

colors. Please refer to the paper for more details.

Ground truth With SS Without SS



Training - stage 3

Extract the mesh

> store visible triangles in OBJ files.

Bake textures

> store the features and alpha into PNG texture images.

Cache the neural renderer

> store the weights of the view-dependent MLP into a JSON file



Real-time NeRF viewer

HTML+JavaScript+WebGL using Three.js.

Online demo:

https://mobile-nerf.github.io



Results - testing devices



Results - GPU memory and disk storage

[1] (SNeRG) Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021.



Results - rendering speed



Results - rendering quality



Visual results

(a) Ground truth (b) SNeRG (c) Our method



Visual results

(a) Ground truth (b) SNeRG (c) Our method



[New] Shader code optimization

MLP shader optimizations suggested by Noeri Huisman

1. Inject network weights directly into the shader source code.

2. Use mat4 and vec3 multiplications in all operations.

3. Forward rendering instead of deferred rendering.
* See the supplementary material of our paper on arXiv for more details.

Rendering speed improvements  (tested on 5 real unbounded scenes with a mobile phone)

Deferred rendering

26 FPS → 35 FPS (↑35%)

Forward rendering

26 FPS → 84 FPS (↑223%)



Scene editing



Scene editing











Limitations



Thank you!

Poster session

THU-AM-009


	Slide 1
	Slide 2
	Slide 3: Triangle meshes as NeRF representation
	Slide 4: Overview - rendering
	Slide 5
	Slide 6: Motivation - speed  
	Slide 7: Motivation - GPU memory   
	Slide 8: Motivation - compatibility   
	Slide 9: Our method
	Slide 10: Triangle meshes as NeRF representation
	Slide 11
	Slide 12: View dependent colors
	Slide 13: Training - stage 1
	Slide 14: Initial grid mesh
	Slide 15: Training - stage 1
	Slide 16: Training - stage 2
	Slide 17: Training - stage 2
	Slide 18: Training - stage 3
	Slide 19: Real-time NeRF viewer
	Slide 20: Results - testing devices
	Slide 21: Results - GPU memory and disk storage
	Slide 22: Results - rendering speed
	Slide 23: Results - rendering quality 
	Slide 24: Visual results
	Slide 25: Visual results
	Slide 26: [New] Shader code optimization
	Slide 27: Scene editing
	Slide 28: Scene editing
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Limitations
	Slide 34: Thank you!

