amovrusin— Google Research CVPRA

THU-AM-009

VANCOUVER CANADA

MobileNeRF: Exploiting the Polygon Rasterization Pipeline
for Efficient Neural Field Rendering on Mobile Architectures

Zhigin Chen* Thomas Funkhouser Peter Hedman Andrea Tagliasacchi*
Simon Fraser University Google Research Google Research Simon Fraser University
Google Research Google Research

University of Toronto

* Work done while at Google.

Chromebook
r = N 7 T-rex scene
Ay ¢ ,. ‘ 1008x756, 20 FPS

Gaming laptop
Bicycle scene
1256x828, 187 FPS

FPS: 60.0
ize: 800x800

iPhone XS
Ficus scene
800x800, 60FPS

Surface Pro 6
Garden scene
1256x828, 20 FPS

CoRe7 |

—

Triangle meshes as NeRF representation

> Compatibility:
Extracted
triangle mesh

All GPUs in modern devices by our method
can render triangles.

> Speed:

GPUs are optimized to
render triangles fast.

Rendered image
by our method

Overview - rendering

Rasterization

;'.‘ e

(b) Texture image
storing features
and opacity

(a) Triangle mesh

(c) “Feature image”
storing features and viewing
directions for each pixel

1. Downsampling for anti-aliasing
2. Running a small MLP for each pixel

&

(d) Final output

Motivation - speed

Classic NeRF methods rely on volumetric rendering.

> Slow: for each pixel, many points need to be sampled
along the ray and evaluated by the MLP.

The figure is taken from SNeRG - Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021.

Standard NeRF Rendering

N

Colors,
alphas ." =% m

d

/
©
0

Final color

Accelerated SNeRG Rendering

Motivation - GPU memory

Recent NeRF methods speed up inference by “baking”
the MLP evaluation results into sparse 3D voxel grids.

E.g., SNeRG, PlenOctrees.

3D texture
atlas 44

> Large: 3D textures or 3D structures have to be stored
in GPU for fast accessing.

[1] (SNeRG) Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021. COIOI‘S, features’

[2] PlenOctrees for Real-time Rendering of Neural Radiance Fields. Yu et al. ICCV 2021. alphas

Motivation - compatibility

Most NeRF methods need cuda and high-end accelerators.

Error: Unsupported renderer: ANGLE (Intel,
Intel(R) UHD Graphics 630 Direct3D11vs_5_0
ps_5_0, D3D11). Are you running with hardware
acceleration enabled?

Frames per second: 125.52

SNeRG

10:18 .4 0100%

Real-time Online Demo

We're excited to present a live demo that works in
modern browsers. Click on one of the scenes below to
open the demo app.

Note: Our full models are on the order of 2GB in size;
for online viewing, the PlenOctrees used are lower
resolution, quantized wversions of 34-125MB, losing
approximately 0.5-1.5 dB in PSNR.

Unfortunately, mohile and tablet devices are not

currently supported due to WebGL compatibility

> hope to suppert this in the future.

PlenOctrees

Our method

We use textured triangle meshes as the NeRF representation.

> Compatibility: all GPUs in modern devices can render triangles.
> Speed: GPUs are optimized to render triangles fast.

> Memory: storing 2D textures consumes much less memory than storing 3D textures.

Triangle meshes as NeRF representation

Extracted triangle mesh Rendered image
by our method by our method

5o A 207.23.177.115:8000 i

Size: 980
ey FPS: 44.9

Size: 800x800

View dependent colors

> Store 8-d features instead of 3-d RGB colors in the texture image.

> Use a tiny MLP running in a GLSL fragment shader to produce the output color.

Camera
pose

|

Rasterization

1. Downsampling for anti-aliasing
2. Running a small MLP for each pixel

(b) Texture image (c) “Feature image”

storing features storing features and viewing (d) Final output
and opacity directions for each pixel

(a) Triangle mesh

Training - stage 1

Initial grid mesh
(vertex positions optimizable)

Camera — Ray r(t)=o0+td

}—
o @] Alphaof pr.) = A(pr:ba)
2 Featureof pr i = F(pr:0r)
Feature field MLP Opacity field MLP SmallMLP (H) — =— Colorof P €k = H (£, d; 0)
(F) (A) to output view-
dependent colors
o % /k“ 1. Computing ray-mesh intersections
N .
+ Three MLPs 2. Alpha-composite colors/features

along ray; use output color for training

Initial grid mesh

1. Store a grid of vertices 2. Connect adjacent
vertices to form faces

Training - stage 1

Feature field MLP

Opacity field MLP

K

Small MLP (H)

to output view-
dependent colors

(F) (A)
b ~
Initial grid mesh Pl Three MLPs
(vertex positions optimizable)

—_—

Camera — Ray r(t)=o0+td

pose
|
| 2. Alphaof pr ok = A(pk: 0
— f/\ phaof px (Pri0a)
<~—’\— 1 Featureof pr fi. = F(pi:fr)
— ——‘r“»—; Colorof pr. ¢ = H(fr.d:0y)
AL

| 1.Computing ray-mesh intersections

= 2. Alpha-composite colors/features
along ray; use output color for training

K k-1
Clr) =Y Tiaxer. Ti=[[(1—a)
k=1 =1

Lc = E[|C(r) — Cu(r)|3.

Training - stage 2

1. Binarization

ar = A(pr;64) A:RB%[O, 1]

&kE{O, 1}

ap = ap —I—,V/[]l(ak > 0.5) — Cek.]

Training - stage 2

1. Binarization

2. Supersampling

(for antialiasing)

*Actually, we average pixel features instead of pixel
colors. Please refer to the paper for more details.

Ground truth ' Without SS

Training - stage 3

Extract the mesh

> store visible triangles in OBJ files.

Bake textures

> store the features and alpha into PNG texture images.

Cache the neural renderer

> store the weights of the view-dependent MLP into a JSON file

- Synthetic 360° scenes —

Real-time NeRF viewer

Ficus Hotdog
Deferred / Forward eferred |

e L

Lego Materials
Deferred / Forward

HTML+JavaScript+WebGL using Three.js.

Mic Ship
Deferred | Forward Daterrad Forward

-- Forward-facing scenes —

Online demo:
https://mobile-nerf.github.io

Results - testing devices

Device Type OS GPU Power
iPhone XS Phone i0S 15 Integrated GPU oW
Pixel 3 Phone Android 12 Integrated GPU oW
Surface Pro 6 Tablet | Windows 10 Integrated GPU I5W
Chromebook Laptop | Chrome OS Integrated GPU 15W
Gaming laptop Laptop | Windows 11 NVIDIA RTX 2070 115W
Desktop PC Ubuntu 16.04 NVIDIA RTX 2080 Ti 250W

Table 1. Hardware specs — of the devices used in our render-
ing experiments. The power is the max GPU power for discrete
NVIDIA cards, and the combined max CPU and GPU power for
integrated GPUs.

Results - GPU memory and disk storage

Device Type oS GPU Power
iPhone XS Phone i0S 15 Integrated GPU oW
Pixel 3 Phone Android 12 Integrated GPU oW
Surface Pro 6 Tablet ~ Windows 10 Integrated GPU I5W
Chromebook Laptop Chrome OS Integrated GPU I15W
Gaming laptop Laptop Windows 11 NVIDIA RTX 2070 115W
Desktop PC Ubuntu 16.04 NVIDIARTX 2080 Ti 250W

Table 1. Hardware specs — of the devices used in our render-
ing experiments. The power is the max GPU power for discrete
NVIDIA cards, and the combined max CPU and GPU power for
integrated GPUs.

Dataset Synthetic 360° Forward-facing | Unbounded 360°
Method Ours | SNeRG|| Ours SNeRG Ours
GPU memory | 538.38 1 2707.25 | 759.25' 4312.13 1162.20
Disk storage 125.75 86.75 | 201.50 337.25 344.60

Table 3. Resources — memory and disk storage (MB).

[1] (SNeRG) Baking Neural Radiance Fields for Real-Time View Synthesis. Hedman et al. ICCV 2021.

Results - rendering speed

Unbounded 360°

Device Type oS GPU Power
iPhone XS Phone i0S 15 Integrated GPU oW

Pixel 3 Phone Android 12 Integrated GPU oW

Surface Pro 6 Tablet ~ Windows 10 Integrated GPU I5W
Chromebook Laptop Chrome OS Integrated GPU I15W
Gaming laptop Laptop Windows 11 NVIDIA RTX 2070 115W
Desktop PC Ubuntu 16.04 NVIDIARTX 2080 Ti 250W

Table 1. Hardware specs — of the devices used in our render-
ing experiments. The power is the max GPU power for discrete
NVIDIA cards, and the combined max CPU and GPU power for
integrated GPUs.

Unbounded 360°

Dataset Synthetic 360° Forward-facing

Method Ours SNeRG | Ours SNeRG Ours
GPU memory | 538.38 2707.25 | 759.25 4312.13 1162.20
Disk storage 125.75 86.75 | 201.50 337.25 344.60

Table 3. Resources — memory and disk storage (MB).

Dataset Synthetic 360° Forward-facing

Method Ours SNeRG | Ours SNeRG Ours
iPhone XS 55.89 0.0% 27.192 0.0% 22201
Pixel 3 37.14 0.0¢ 12.40 0.08 9.24
Surface Pro 6 77.40 Unsupported 21.51 Unsupported 19.44
Chromebook 5367 22622 | 1944 73857 | 15.28
Gaming laptop 178.26 8304 57.72 3.63 55.32
Gaming laptop ¢ [1606.73 43.87%1 | 250.17 26.01 192.59
Desktop # 74491 207.26 | 349.34 50.71 279.70

Table 2. Rendering speed — on various devices in frames per sec-
ond (FPS). The devices are on battery, except for the gaming lap-
top and the desktop which are plugged in, indicated with a ¥. The
mobile devices (first four rows) have almost identical rendering
speed when plugged in. With the notation % we indicate that M

out of NV testing scenes failed to run due to out-of-memory errors.

Results - rendering quality

Synthetic 360°
PSNRT SSIM+ LPIPS]

Forward-facing
PSNR{ SSIMT LPIPS|

Unbounded 360°
PSNRt SSIMT LPIPS|

NeRF 31.00 0.947 0.081 | 2650 0811 0250 | - - -
JAXNeRF| 31.65 0.952 0.051 | 2692 0.831 0.173 | 21.46 0458 0515
NeRF++ - - - - - - | 2276 0548 0427
SNeRG | 30.38 0.950 0.050 | 25.63 0.818 0183 | - - f
Ours 30.90 0947 _0.062 | 25.91 0.825_0.183 | 21.95 0.470 0.470
Table 4. Quantitative Analysis — For NeRF and NeRF++, we

dash entries where the original papers did not report quantitative
performance.

Visual results

(a) Ground truth (b) SNeRG (c) Our method

Visual results

(a) Ground truth (b) SNeRG (c) Our method

[INew] Shader code optimization

MLP shader optimizations suggested by Noeri Huisman

1. Inject network weights directly into the shader source code.
2. Use mat4 and vec3 multiplications in all operations.

3. Forward rendering instead of deferred rendering.
* See the supplementary material of our paper on arXiv for more details.

Rendering speed improvements (tested on 5 real unbounded scenes with a mobile phone)

Deferred rendering Forward rendering

26 FPS > 35 FPS (135%) 26 FPS > 84 FPS (1223%)

Scene editing

Scene editing

Limitations

] |

Ours, viwing frrh,_ front

« """ Ground truth

A
! r
v
v,

Scene: room, forward-facing Scene: drums, synthetic 360° Scene: flower, unbounded 360°

(a) Wrong geometry (b) No semi-transparency (c) Fixed mesh resolution

Thank you!

Poster session
THU-AM-009

	Slide 1
	Slide 2
	Slide 3: Triangle meshes as NeRF representation
	Slide 4: Overview - rendering
	Slide 5
	Slide 6: Motivation - speed
	Slide 7: Motivation - GPU memory
	Slide 8: Motivation - compatibility
	Slide 9: Our method
	Slide 10: Triangle meshes as NeRF representation
	Slide 11
	Slide 12: View dependent colors
	Slide 13: Training - stage 1
	Slide 14: Initial grid mesh
	Slide 15: Training - stage 1
	Slide 16: Training - stage 2
	Slide 17: Training - stage 2
	Slide 18: Training - stage 3
	Slide 19: Real-time NeRF viewer
	Slide 20: Results - testing devices
	Slide 21: Results - GPU memory and disk storage
	Slide 22: Results - rendering speed
	Slide 23: Results - rendering quality
	Slide 24: Visual results
	Slide 25: Visual results
	Slide 26: [New] Shader code optimization
	Slide 27: Scene editing
	Slide 28: Scene editing
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Limitations
	Slide 34: Thank you!

