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Text-to-image generative models

Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models ”, CVPR, 2022
Ramesh et al. “Zero-shot text-to-image generation”, ICML 2021
Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, NeurIPS, 2022
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Stable Diffusion/DALL-E/Imagen

● High-quality realistic images 



Text-to-image generative models

Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models ”, CVPR, 2022
Ramesh et al. “Zero-shot text-to-image generation”, ICML 2021
Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, NeurIPS, 2022

Do we still need real images 
for learning visual representations?

“cat”

Stable Diffusion/DALL-E/Imagen

● High-quality realistic images 



real images

Supervised learning on ImageNet-1K

Encoder Classifier Loss

Deng et al. “Imagenet: A large-scale hierarchical image database”, CVPR 2009
Russakovsky et al., “Imagenet large scale visual recognition challenge”, IJCV, 2015

labels

papillon

lorikeet

pirate ship



synthetic images

Can ImageNet-1K be replaced by synthetic images?

Encoder Classifier Loss

Deng et al. “Imagenet: A large-scale hierarchical image database”, CVPR 2009
Russakovsky et al., “Imagenet large scale visual recognition challenge”, IJCV, 2015

labels

lorikeet

pirate ship

papillon



labelsImageNet-SD

Training image classifiers on ImageNet-SD

Encoder Classifier

papillon

lorikeet

pirate ship

Loss



Overview of the results

Performance on ImageNet-1K val. set
(real images)

Performance on 15 transfer datasets
(real images)
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Prompts for synthesizing ImageNet clones

Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models ”, CVPR, 2022
Pretrained model available at https://huggingface.co/CompVis/stable-diffusion-v1-4

Textual
Prompt Synthetic Image



Prompts for synthesizing ImageNet clones

Synthetic Image

“papillon” “lorikeet” “pirate, pirate ship”

Textual
Prompt

prompt = class name



“pirate, pirate ship” class in ImageNet“papillon” class in ImageNet

Prompts for synthesizing ImageNet clones

Synthetic Image

“papillon” “lorikeet” “pirate, pirate ship”

Textual
Prompt

prompt = class name

Semantic errors
Lack of diversity

Domain issues



Tackling semantic & domain issues

Synthetic Image

Miller. et al. “WordNet: A Lexical Database for English”. ACM-Comm 1995

“papillon, <hypernympapillon>” “lorikeet, <hypernymlorikeet>” “pirate ship, <hypernympirate-ship>”

prompt = class name, hypernym*

Textual
Prompt

*  from Wordnet lexical database



Tackling semantic & domain issues

Synthetic Image

Miller. et al. “WordNet: A Lexical Database for English”. ACM-Comm 1995

“papillon, <hypernympapillon>” “lorikeet, <hypernymlorikeet>” “pirate ship, <hypernympirate-ship>”

prompt = class name, hypernym*

prompt = class name, description*
“papillon, <descriptionpapillon>” “lorikeet, <descriptionlorikeet>” “pirate ship, <descriptionpirate-

ship>”

Textual
Prompt

*  from Wordnet lexical database



Increasing diversity

Synthetic Image

Zhou et al. “Places: A 10 million image database for scene recognition.” PAMI, 2017 

prompt = class name, hypernym inside background**

Textual
Prompt

“papillon, <hypernympapillon>
inside <background>”

“pirate ship, <hypernympirate-ship>
inside <background>”

“lorikeet, <hypernymlorikeet>
inside <background>”

**  from Places 365 dataset



Increasing diversity

Synthetic Image

Zhou et al. “Places: A 10 million image database for scene recognition.” PAMI, 2017 

prompt = class name, hypernym inside background**

Textual
Prompt

“papillon, <descriptionpapillon>” “lorikeet, <descriptionlorikeet>” “pirate ship, <descriptionpirate-
ship>”

prompt = class name, description (+ reduce guidance scale)

“papillon, <hypernympapillon>
inside <background>”

“pirate ship, <hypernympirate-ship>
inside <background>”

“lorikeet, <hypernymlorikeet>
inside <background>”

**  from Places 365 dataset



The ImageNet-SD datasets

ImageNet-SD ImageNet-SD datasets: 
Synthetic clones of different ImageNet subsets

● ImageNet-100-SD: 100 classes, 130k images

● ImageNet-1K-SD: 1000 classes, 1.2M images



Training and evaluation protocols

Classifier

Encoder🔒

🔒

Evaluation protocol 

real images

Training with synthetic data 

ImageNet-SD

Encoder Classifier Loss

class labels

Classifier

for ImageNet classes

for each transfer dataset



ImageNet-100: Results for different prompts
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Observations:

● Addressing semantic, 
domain and diversity issues
leads to better performance
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Observations:

● Addressing semantic, 
domain and diversity issues
leads to better performance

● Significant gap between the 
models trained on real vs. 
synthetic images for the 
training classes

ImageNet-100: Results for different prompts
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Performance on ImageNet-100-Val
(real images)

ImageNet-100: Scaling the number of synthetic images

1x
Number of synthetic images 

used for model training

real
images
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Performance on ImageNet-100-Val
(real images)
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ImageNet-100: Scaling the number of synthetic images



Performance on ImageNet-100-Val
(real images)
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Performance on ImageNet-100-Val
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Performance on ImageNet-100-Val
(real images)
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● Increasing the number of
synthetic images slightly 
reduces the gap

● Unlikely to close it

real
images

ImageNet-100: Scaling the number of synthetic images



ImageNet-100: Results for transfer learning

1x
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used for model training

real
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Performance on 10 transfer 
datasets
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Kornblith et al., “Do better ImageNet models transfer better?”, CVPR, 2019
[Long-tail] Horn et al., “The iNaturalist species classification and detection dataset”, CVPR, 2018 



ImageNet-100: Results for transfer learning
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Results for transfer learning
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higher transfer learning 
performance

● Representations from the 
model trained synthetic
images outperform the ones 
from real for transfer learning 
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ImageNet-1K: Comparison to the state-of-the-art
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v2 Sketch R A

[RSB-A1] Wightman et al., “ResNet strikes back: An improved training procedure in timm.”, NeurIPSW, 2021 

RSB-A1 trained on ImageNet-1K 
(real images)

Model trained on ImageNet-1K-SD 
(synthetic images)

Training with the exact same number
of real and synthetic images per class



Observations:

● Significant gap between the 
models trained on real vs. 
synthetic images for the 
training classes
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[RSB-A1] Wightman et al., “ResNet strikes back: An improved training procedure in timm.”, NeurIPSW, 2021 

v2 Sketch R A RSB-A1 trained on ImageNet-1K 
(real images)

Model trained on ImageNet-1K-SD 
(synthetic images)ImageNet-1K

validation set

Training with the exact same number
of real and synthetic images per class



Observations:

● Significant gap between the 
models trained on real vs. 
synthetic images for the 
training classes

● Relative gap is smaller for 
other variants especially ones 
with domain shifts

ImageNet-1K: Comparison to the state-of-the-art
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[RSB-A1] Wightman et al., “ResNet strikes back: An improved training procedure in timm.”, NeurIPSW, 2021 

v2 Sketch R A RSB-A1 trained on ImageNet-1K 
(real images)

Model trained on ImageNet-1K-SD 
(synthetic images)ImageNet-1K

validation set



Performance on 15 transfer datasets
(real images)
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ImageNet-1K: Comparison to the state-of-the-art

[ImageNet-CoG] Sariyildiz et al., “Concept Generalization in Visual Representation Learning”, ICCV, 2021 
[Long-tail] Horn et al., “The iNaturalist species classification and detection dataset”, CVPR, 2018 
[Small-scale] Kornblith et al., “Do better ImageNet models transfer better?”, CVPR, 2019

RSB-A1 trained on ImageNet-1K 
(real images)

Model trained on ImageNet-1K-SD 
(synthetic images)

small-scale
datasets

long-tail
datasets

ImageNet-CoG
datasets



Observations:

● The model trained on synthetic
images is on-par or better than 
the publicly available, state-of-
the-art, RSB-A1 model

● Synthesizing more images 
could lead to further gains
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ImageNet-1K: Comparison to the state-of-the-art

[ImageNet-CoG] Sariyildiz et al., “Concept Generalization in Visual Representation Learning”, ICCV, 2021 
[Long-tail] Horn et al., “The iNaturalist species classification and detection dataset”, CVPR, 2018 
[Small-scale] Kornblith et al., “Do better ImageNet models transfer better?”, CVPR, 2019

RSB-A1 trained on ImageNet-1K 
(real images)

Model trained on ImageNet-1K-SD 
(synthetic images)

Performance on 15 transfer datasets
(real images)

small-scale
datasets

long-tail
datasets

ImageNet-CoG
datasets



Result summary:
● Decent but inferior performance on the ImageNet classes
● On-par or better performance than the state-of-the-art for transfer learning

Bigger picture:  
● Image-free distillation of a generic text-to-image generation model 

into a visual encoder of arbitrary architecture, for solving a specific task

Take home message

What if we replace the ImageNet dataset
with synthetic data from Stable Diffusion?

ImageNet-SD:
Synthetic ImageNet clones 

with Stable Diffusion images



Take home message

Come to our poster!
TUE-PM-372

What if we replace the ImageNet dataset
with synthetic data from Stable Diffusion?

ImageNet-SD:
Synthetic ImageNet clones 

with Stable Diffusion images

Project page:
https://europe.naverlabs.com/imagenet-sd


