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VILA: Vision Language Aesthetics Learning Framework

e Pretrain an image aesthetic model
with noisy image-comment pairs

e Efficiently adapt the model for

downstream |IAA tasks
o Tunes only 0.1% params
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Motivation: Score-based IAA is Limited

e Image Aesthetic Assessment (IAA) methods are based on human ratings, but a single
score does not capture the diverse aesthetic factors
o E.g. composition, color, style, high-level semantics
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Motivation: User Comments Provide Rich Aesthetic Semantics
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frame, and therefore not “simple and nice the idea is good here but the
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enough of the background composition, i like it PNOTO 1S Too biurry.
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VILA: Pretrain + Adapting

(1) VILA-P: Vision-Language Aesthetics Pretraining
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(2) VILA-R: Rank-based Adapter for IAA
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VILA-P: Pretraining using Image-Comment Pairs

1. General pretraining with a filtered 650M subset of LAION-5B-EN

2. Aesthetic pretraining with 250K Image-Comment pairs from AVA-Captions,
which is crawled from a professional photograph sharing website

(1) VILA-P: Vision-Language Aesthetics Pretraining
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VILA-P: Experiment Results

e SOTA on image aesthetics captioning over AVA-Captions

e

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr
CWS[11] 0.535 0.282 0.150 0.074 0.254  0.059 s ; 'q S
Yeo et al. [58] 0.464 0.238 0.122 0.063 0.262 0.051 B - ) . S - - y
— 05T 0288 0390 008 022 Uie ""pretty colors. the bright flowers on the "cute Kkitty is the best pose "color, focus and saturation are
: i ; ; i i trees add interest to anything." for this picture." good. the image seems a little dark."

Table 5. Results on AVA-Captions dataset.

"maybe could have cropped a bit "great perspective and colors in  "lovely shooting with excellent
more on top of the birches." this shot. love the beautiful sky ." colour, great composition."



VILA-P: Experiment Results

e /Sl for Image Aesthetic Assessment
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VILA-P: Experiment Results

ZSL for Image Aesthetic Assessment
Surpasses many supervised baselines

©)

Method SRCC PLCC
Kong et al. [24] 0.558 -
NIMA (Inception-v2) [43] 0.612 0.636
AFDC + SPP [2] 0.649  0.671
MaxViT [46] 0.708  0.745
AMP [31] 0.709 -
Zeng et al. (resnetl101) [55] 0.719  0.720
MUSIQ [19] 0.726  0.738
Niu et al. [33] 0.734  0.740
MLSP (Pool-3FC) [15] 0.756  0.757
TANet [13] 0.758  0.765
GAT «3-GATP [12] 0.762 0.764
Zero-shot Learning

VILA-P (single prompt) 0.605 0.617
VILA-P (ensemble prompts)  0.657  0.663

Image Aesthetic Assessment on AVA




VILA-P: Experiment Results

e /SL for Style Classification

Method mAP (%)

Murray et al. [36]
Karayev et al. [19]
Luetal [32]

MNet [46]

Sal-RGB [10]

Zero-shot Learning

General Pretraining (single prompt) 29.3

General Pretraining (ensemble prompts) 32.6

VILA-P (single prompt) 62.3 N

VILA-P (ensemble prompts) 69.0 - ‘ " Vanishing point

Table 4. Results on AVA-Style dataset. We out supervised
baselines as they are not directly comparable to our unsupervised
model which is not exposed to the training labels.

Top-5 Retrieved Images



VILA-R: Rank-based Adapter for IAA

e Inspired from ZSL setting, using text prompts to score images
o Use the frozen text embedding of “good image” as an anchor to score images
o Adjust image representation (w/ a learnable residual projection) to optimize the
relative ranking between two images
e Tunes only 0.1% of the total parameters
(2) VILA-R: Rank-based Adapter for IAA

LR (Ranking Loss)
V/”Iﬁ
Positive

@ , © = normalize(v ' H + v),

Shared Learnable T

Residual Projection r=7 wp
& Unimodal & 1} 7 e
Lra = — max(()m—v-'w 'v-'w)
/ Image Encoder Text Decoder RA P Z , i Wp =+ j Wp
4,5,8F 4, li>1;

u t

/ P food ot [cLs|

r";{‘j > l "good image"

MOS =8.04 MOS =2.34



VILA-R: Experiment Results

e State-of-the-art performance on image aesthetics assessment over AVA

Method SRCC PLCC
Kong et al. [24] 0.558 -
NIMA (Inception-v2) [43] 0.612  0.636
AFDC + SPP [2] 0.649 0.671
MaxViT [46] 0.708  0.745
AMP [31] 0.709 -
Zeng et al. (resnet101) [55] 0.719  0.720
MUSIQ [19] 0.726  0.738
Niu et al. [33] 0.734  0.740
MLSP (Pool-3FC) [15] 0.756  0.757
TANet [13] 0.758  0.765
GAT «3-GATP [12] 0.762 0.764
Zero-shot Learning

VILA-P (single prompt) 0.605  0.617
VILA-P (ensemble prompts)  0.657  0.663
VILA-R 0.774  0.774

Image Aesthetic Assessment on AVA



Ablation: Necessity of Aesthetic Pretraining

e Aesthetic related information is under-represented in general image-text pairs from

the Web

e Learning on noisy image-comment pairs from photo sharing website captures the rich
aesthetic semantics

ZSL Ens. Prompts

General Pretraining
Aesthetic Pretraining

4 v
v v

SRCC
PLCC

0.228 0.265 0.657
0.228 0.276 0.663

ZSL Single Prompt | ZSL Ens. Prompt
General Pretraining v v v v
Aesthetic Pretraining v v
mAP 29.3 62.3 32.6 69.0

ZSL performance on AVA Image
Aesthetic Assessment

ZSL performance on AVA-Style classification



Ablation: Effectiveness of the Rank-based Adapter

e Using text anchor is better: it leverages the rich textual aesthetic information from
pretraining
e Learning aresidual is better: we only need to slightly adjust the image embedding
e Finetune can further improve performance, but disturbs the generic pretrained weights
o E.g. AVA-Style mAP drops from 69% to 26%

Method SRCC PLCC
VILA-P w/ L2 Loss 0.757  0.756
VILA-P w/ EMD Loss [43] 0.759  0.759
VILA-R w/o Text Anchor 0.763 0.764
VILA-R w/o Residual 0.766 0.766
VILA-R (Ours) 0.774 0.774

Table 3. Ablation for the proposed rank-based adapter (Sec. 4) on
AVA. First two groups use frozen pretrained image encoder.
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