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Quick Preview

* Continual learning aims to learn on long task
sequences without catastrophic forgetting.

* Replay-based methods address this by rehearsing
on a small replay buffer, which requires careful
sample selection.

* However, existing strategies are designed for
single-round selection, neglecting the interactions
between selection steps.

* This work proposes to model the interactions with
influence functions and address it via a regularized
selection strategy.
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INntroduction

Task description

 Continual learningt studies the training of models on long task sequences with potential
data distribution shift.

* |t is known for suffering from catastrophic forgetting!?l, where the model abruptly forgets

past knowledge after being updated on new tasks.
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[1] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Morgan & Claypool Publishers, 2018.
[2] Michael McCloskey and Neal J Cohen. “Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem” . Psychology of Learning and Motivation, 1989, 24: 109-165.
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Motivation

* Replay-based approaches mitigate forgetting by
rehearsing on a small replay buffer, which requires
careful sample selection.

* However, existing selection strategies primarily
focus on refining single-round performance,
neglecting the interactions between consecutive
selection steps through the data flow.
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Our contributions
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Method

Problem formulation

* We consider learning on a data stream Z1.; = Ule Z; with a small coreset C¢. The sample
selection goal Is to preserve performance on C¢_1 U Z; by replaying on Cg:

po min > L(z6)
CCalZe G2
t t-1 t-1Cr | SM 2:€Cr1UZ;

s.t. 6 =argmin Z L(z;, 0).

0 Zi EC[

* In the following, we will first present a greedy solution based on influence functions!*?l, then
showecase its limitations and propose our improved version.

[1] Frank R Hampel. “The Influence Curve and Its Role in Robust Estimation” . Journal of the American Statistical Association, 1974, 69(346): 383—-393.
[2] Pang Wei Koh and Percy Liang. “Understanding Black-Box Predictions via Influence Functions” . In: ICML. 2017: 1885-1894.



Method

Influence-based selection

* To solve the bilevel optimization problem, we linearly approximate the effect of selecting
each sample z by perturbing its weight:

A

. , = arg min Z L(z;,0) +€L(z,0).

0 Zi € C[

* A classic resultl!! gives the influence of upweighting z on the outer loss:

I(Z) — Z dL(Zi, 06,2)

de
zi€C1VZ,

e=0

= — Z V(;L(Zi,é;)TH;;tIVOL(Z,ét)°
zi€C-1VZ:

* |t further yields an optimal solution that greedily select the most influential samples.

[1] R Dennis Cook and Sanford Weisberg. Residuals and Influence in Regression. New York: Chapman and Hall, 1982.



Method

Second-order influences

* This greedy selection strategy favors samples that are more similar to the existing ones.

I(z)=— > VQL(zi,ét)THé:1V9L(z,ét).

2, €C_1UZ;
* Due to second-order effects, it would result in a biased and less diversified coreset:

Step 1 Step 2
—> —>
/
. > .‘4' =
0 0

_— ——
Current coreset gradient ~ Previous coreset gradient



Method

Second-order influences
* To model such an effect, we upweight two samples z and z' from consecutive selection steps.

Upweighting the previous sample interferes with the subsequent selection:

* |If zand z' are not jointly optimized in the next round:

T
IG,Z(Z,) — —( Z VgL(zl, ét+1) + GVHL(Z, ét-f—l)) HgII“VoL(Z" ét-{-l)‘

Zi€CUZ 41

I(z) (Z, Z’) = —VQL(Z’ é\t+1)TH5’1+lV9L(z’a ét+1)'

* If z and z’ are jointly optimized in the next round:

-
Ie,z(z,) = _( Z VoL (zi, ét+l) +€VyL(z, ét+l)) (Hé,+1 it EHé,ﬂ,z)_lVHL(Z’, ét+l)'

Zi ECIUZI-H

]—(2)(2, 7')=—-(Vy4L(z, ét+1) - Hé,+1,zst+1)TH5tl+lVGL(Z,, é\t+1)-



Method

Regularizing influences

* The total interference is a weighted sum of the two second-order influences:

AI(Z)~- ) IP(z7)1
z€C;
= Z (VoL(z, ét+l) - ﬂHé,+,,zst+1)TH5t1+1V6’L(Z,, ét+1)'

z€Cy

* |ts magnitude can be upper-bounded with the following regularizer:

|’

x || VoL(@,01)

IAT(2) <|| )" (VoL(z,8101) — uHo,, .511)

ZGC[

R(C) =Y (VoL(z,0,) - uHg, ,5:)

Z EE;

* This regularizer is used in the final selection criterion: minimize ) (@ +¥R(C).

Z€Cy



Method

Interpreting the regularizer

< Effect of u

R(C,) = Z (VoL(z,0)—pHs sl

z€C,

® >
. . 0
* u =0 = gradient matching!!:

REC)=| D VoL(z.0) - ) VoL(z.8))|.

z€C\VZ, z€C —_—

Full gradient Feasible region, u > 0 Feasible region, u = 0

* u > 0, identical Hessian = diversityl?!:

R(C) = [[(1-an) D VoL(z,8) - ) VoL(z,0))

2€C-1VZ: z€C

b

* additional Hessian-related information

[1] Bo Zhao, Konda Reddy Mopuri and Hakan Bilen. “Dataset Condensation with Gradient Matching” . In: ICLR. 2021.
[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud et al. “Gradient based Sample Selection for Online Continual Learning” . In: NeurlPS. 2019: 11817-11826.



Experiments

* Comparison to state-of-the-art methods on Split CIFAR-10

Class-incremental Task-incremental
Method m = 300 m = 500 m = 300 m = 500
ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

GEM!!2! 37.51 -70.48 36.95 -69.76 89.34 -9.09 90.42 -7.88
A-GEMP3! 20.02 -95.68 20.01 -95.69 85.52 -14.07 86.45 -12.83
ERI[®] 34.19 -78.18 40.45 -70.36 88.97 -9.95 90.60 -71.74

Non-IF GSS?2] 35.89 -75.80 41.96 -68.24 88.05 -10.63 90.38 -7.73
ER-MIR[4 38.53 -72.72 42.65 -67.50 88.50 -10.33 90.63 -7.62
GDUMB?!! 36.92 - 44 .27 - 73.22 - 78.06 -
HAL/®! 24.45 -83.56 27.94 -80.01 79.90 -14.39 81.84 -12.73
GMEDP¢! 38.12 -73.16 43.68 -66.21 88.91 -9.76 89.72 -8.75
Vanilla IF 41.76 -68.59 47.14 -62.20 90.67 -7.65 91.06 -7.36

IF MetaSP3! 43.76 -66.37 50.10 -58.39 89.91 -9.00 91.41 -7.36

Ours 48.62 -60.24 53.07 -54.44 91.52 -6.94 92.53 -5.46




Experiments

* Comparison to state-of-the-art methods on Split m/nimageNet

Class-incremental Task-incremental

Method m =500 m = 1000 m = 500 m = 1000
ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)
A-GEM®! 1069 4922  10.69  -49.16 1834  -39.65 1878  -39.05
ER[! 1100  -50.84 1135  -50.08  28.97  -2840 3159  -24.95
Noppp GSS?” 11.09  -50.66 1142  -4991 2867  -2871 3175  -24.56
on-I pRMIR® 1107  -5046 1132  -49.92 2910  -27.95 3139  -24.89

GDUMBR2! 622 - 7.15 ] 16.37 ] 17.69 ]
GMEDS! 11.03  -5023 1173 -48.93 3047  -26.02  32.85  -22.69
Vanilla IF 1208  -4855 1464  -4715 3374 2171 3755  -19.28
IF MetaSPP 1274 4884 1454 4552 3436 2170 3720  -17.83

Ours 13.63 -47.94 16.15 -43.78 36.46 -19.48 39.61 -16.01




Experiments

* Ablation studies of hyperparameter sensitivity and influence estimation accuracy
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Thanks for listening

Code Is available at https://github.com/feifeiobama/InfluenceCL



https://github.com/feifeiobama/InfluenceCL

