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Emerging 3D Applications
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Augmented Reality
Existing RibFrac ~ New Annotations
CT Scans Rib Segmentation
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» PointCloud
« A suitable data format to 3D Scene
Understanding
» Close to original sensor and is directly
after the lidar scan
« Point Cloud is simple, just a point set

» Characteristic
« Sparse
* Irregular
* Unorder
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Point Cloud Processor
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« Point cloud has sparse and irregular data format, which can not be processed with
existing convolutional neural network

V.S

Camera Sensor

Lidar Sensor
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« Point cloud has sparse and irregular data format, which can not be processed with existing
convolutional neural network.

¢ PO I nt C I ou d P rocessor. Hierarchical point set feature learning
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« Sparse Convolution (Conventional and SubManifold)

Squ

SparseConv_

3D Sparse
Sparse Voxel Grid Convolutional Network
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DSVT

« The intensive computation of sampling and grouping.

« The limited representation capacity due to submanifold dilation.

« Can not be implemented with well-optimized deep learning tools (TensorFlow or PyTorch) and require
writing customized CUDA codes, which needs to be heavily optimized before deployment.

O

Point-based Local Feature

Extractor (PointNet++) Sparse Convolution
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Transformer on sparse point clouds?

« Transformer is naturally suitable to sparse data.
« How to apply a standard Transformer is nontrivial.
« Global Attention: can not be applied to process the large-scale point clouds (~60000 voxels).
« Window Attention: due to the sparsity of point clouds, the number of non-empty voxels in each

local window varies significantly, which can not be computed in a fully parallel manner.

Different windows
have different number
of points, which can
not be calculated in a
fully parallel manner
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Main Contributions

sparse 3D voxels in parallel.
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We propose Dynamic Sparse Window Attention, a window-based attention strategy for handling

Based on the above key design, we introduce an efficient yet deployment-friendly transformer 3D

backbone without any customized CUDA operations. It can be easily accelerated by NVIDIA TensorRT
to achieve real-time inference speed (27Hz).

with a remarkable gain.
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Our approach outperforms previous state-of-the-art methods on the large-scale Waymo Open Dataset
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Note that a lidar typically operates at 10 Hz to 20 Hz.
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Dynamic Sparse Window Attention

* Dynamic Set Partition
« Combine Local Region and Voxel Number.

« Reformulate sparse window attention as parallel computing self-attention within a
series of local sets.

 Window Bounded: Compute attention

in local region - R

* Non-overlapped: the local sets are B
non-overlapped ~

« Size-Equivalent: each subset is
guaranteed to have the same o
number of voxels N IElel

« Dynamic: The set number dynamically IEEOEEEE EEaE
varies with the sparsity of the window. e e e ey e

S R L |l

12 voxels in
each subset

| Voxelin Set 1 " Voxel in Set 3 .
o Local Window

| Voxel in Set 2 .| Voxel in Set 4
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Dynamic Sparse Window Attention

* Rotated set attention for intra-window feature propagation.

« Computing self-attention inside the
invariant partition lacks connections
across the subsets.

* Dynamic set partition is highly
dependent on the inner-window
voxel ID

 Control the covered local region of
each set by voxel ID reordering with
different sorting strategies.
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Figure 2. A demonstration of dynamic sparse window attention in
our DSVT block. In the X-Axis DSVT layer, the sparse voxels will
be split into a series of window-bounded and size-equivalent subsets
in X-Axis main order, and self-attention is computed within each
set. In the next layer, the set partition is switched to Y-Axis. The
self-attention computation in the new sets crosses the boundaries
of the previous sets, providing connections among them.
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Dynamic Sparse Window Attention

« Rotated set attention for intra-window feature propagation.

» Rotated-set attention approach that
alternates between X-Axis and Y-Axis
partitioning configurations in
consecutive attention layers.

« One DSVT Block:

F',0' = INDEX(V'" 1, {Q,}521, D,),
V! = MHSA(F', PE(OY)),

FH+1, 01 = INDEX(V', {Q;}5-4, D),
Y+ — MHSA(F'+!, PE(O)),
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Figure 2. A demonstration of dynamic sparse window attention in
our DSVT block. In the X-Axis DSVT layer, the sparse voxels will
be split into a series of window-bounded and size-equivalent subsets
in X-Axis main order, and self-attention is computed within each
set. In the next layer, the set partition is switched to Y-Axis. The
self-attention computation in the new sets crosses the boundaries
of the previous sets, providing connections among them.
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Experiments

« State-of-the-Art Performance on Waymo Open Dataset

Method Presentat | St mAP/mAPH | mAP/mAPH | Vehicle 3D AP/APH | Pedestrian 3D AP/APH | Cyclist 3D AP/APH
ethods csentat | Stages L1 L2 L | L2 L | L2 L L2
SECOND [51] Sensors’18 | One | 67.2/63.1 | 61.0/572 | 72.3/71.7 | 63.9/633 | 68.7/58.2 | 60.7/51.3 | 60.6/59.3 | 58.3/57.0 20 HZ
PointPillars} [22] CVPR'19 | One | 69.0/63.5 | 62.8/57.8 | 72.1/71.5 | 63.6/63.1 | 70.6/56.7 | 62.8/50.3 | 64.4/62.3 | 61.9/59.9
CenterPoint-Voxelt [53] | CVPR'21 | One | 74.4/717 | 682/658 | 74.2/73.6 | 66.2165.7 | 76.6/70.5 | 68.8/632 | 72.3/71.1 | 69.7/68.5 |
SST# [12] CVPR'22 | One | 745/71.0 | 67.8/646 | 74.2/73.8 | 65.5/65.1 | 78.7/69.6 | 70.0/61.7 | 70.7/69.6 | 68.0/66.9 73
VoxSet [18] CVPR'22 | One | 754/722 | 69.1/662 | 74.5/74.0 | 66.0/65.6 | 80.0/72.4 | 72.5/65.4 | 71.6/70.3 | 69.0/67.7 " ®- !) .
AFDetv2 [19] AAAT22 | One | 772748 | TLO688 | 77.6/77.1 | 69.7/69.2 | 8027746 | 7221670 | 73.7/72.7 | 71.0/70.1 DVST-Pillar-TS (ours)®=--____ S VST-Pillar-RT (ours)
SWFormer [41] ECCV'22 | One A - 778773 | 69.2/68.8 | 80.9/72.7 | 72.5/64.9 - v 71 i t @
PillarNet-34 [34] ECCV'22 | One | 77.3/746 | 71.0/685 | 79.1/78.6 | 70.9/70.5 | 80.6/74.0 | 72.3/66.2 | 72.3/71.2 | 69.7/68.7 o ° DVS[T-Pillar (Ouri)
CenterFormer [56] ECCV'22 | One | 753/12.9 | 71.1/689 | 75.0/74.4 | 69.9/69.4 | 78.6/73.0 | 73.6/683 | 72.3/71.3 | 69.8/68.8 = 69
Ours (Pillar) - One | 795771 | 732/71.0 | 79.3/78.8 | 70.9/70.5 | 82.8/77.0 | 75.2/69.8 | 76.4/75.4 | 73.6/72.7 E PV-RCNN++ I
Ours (Voxel) - One | 803/782 | 74.0/721 | 79.7779.3 | T1.4/71.0 | 83.7/78.9 | 76.1/715 | 71.5/16.5 | 74.6/73.7 < ¢
PV-RCNN{ [35] CVPR'20 | Two | 762/73.6 | 69.6/672 | 78.0/77.5 | 69.4/69.0 | 79.2/73.0 | 70.4/64.7 | 71.5/70.3 | 69.0/67.8 g PV-RCNN VoxSet g, i
Part-A2-Net [3] TPAMI'20 | Two | 73.6/703 | 669/638 | 77.1/76.5 | 68.5/68.0 | 75.2/66.9 | 66.2/58.6 | 68.6/67.4 | 66.1/64.9 S CenterPgint-Voxel ®
CenterPoint-Voxel [53] CVPR21 | Two - - 76.7176.2 | 68.8/683 | 79.0/72.9 | 71.0/65.3 - - = 65
PV-RCNN++(center) [36] | IICV’22 | Two | 78.1/759 | 717/69.5 | 79.3/78.8 | 70.6/702 | 81.3/76.3 | 73.2/68.0 | 73.7/72.7 | 7120702 s ° ST I
FSD [13] NeurlPS'22 | Two | 79.6/774 | 7297708 | 79.2/78.8 | 70.5/70.1 | 82.6/77.3 | 73.9/69.1 | 77.1/776.0 | 74.4/73.3 E 63 Part-A2
Ours (Pillar-TS) - Two | 80.6/78.2 | 743/721 | 80.2/79.7 | 72.0/71.6 | 83.7/78.0 | 76.1/70.7 | 77.8/76.8 | 74.9/73.9 S I CenterPoint-Pillar
Ours (Voxel-TS) - Two | 8L1/78.9 | 748/72.8 | 80.4/79.9 | 72.2/71.8 | 84.2/79.3 | 76.5/71.8 | 78.6/77.6 | 75.1/74.7 = ()
all : PointPill
I oitPillars o
% Second @
Methods Present at val fest 57 |
NDS | mAP | NDS | mAP  “g qe | DA | PC [WW | SL | CP | DI | mloU 0 5 10 15 20 25 30
PointPillars [22] CVPR’19 - - 453 | 30.5 2D Conv [25] | 72.0 | 43.1 | 53.1 | 29.7 | 27.7 | 375 | 438 Scene per second (Hz)
CBGS [57] ArXiv’19 | 62.3 | 506 | 633 | 52.8 3D SpConv [25] | 75.6 | 48.4 | 575 | 36.5 | 317 | 41.9 | 486
CenterPoint-Voxel [53] | CVPR’21 | 66.8 | 59.6 | 67.3 | 60.3 Ours (Pillar) | 797 | 518 | 6L1 | 382 | 338 | 453 | 51.6
Transfusion-L [1] CcvPrR'22 | 693 | 647 | 702 | 655 Ours (Pillar) 87.6 | 67.2 | 727 | 59.7 | 62.7 | 582 | 68.0
PillarNet-34 [34] ECCV’22 - - 714 | 66.0
Ours (Pillar) - 71.1 | 664 | 72.7 | 68.4
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Conclusion
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* We propose DSVT, a deployment-friendly yet powerful transformer-only 3D backbone for

3D object detection, which can be accelerated by NVIDIA TensorRT with real-time running
speed (27Hz).

« We hope that our DVST can not only be a reliable point cloud processor for 3D object
detection in real-world applications but also provide a potential solution for efficiently
handling large-scale sparse data in other tasks.
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