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Overview of Our Work

- HIErarchical Regularization (HIER)

• Providing richer and more fine-grained supervision 
beyond inter-class separability induced by common metric 
learning losses. 

• Discovering and deploying the latent semantic hierarchy of 
data by approximating soft hierarchical clustering.

• No need for extra annotation for the semantic hierarchy.

• Utilize hyperbolic space as the embedding space to              
effectively represent hierarchical structures of data.

• Enable the use of conventional metric learning losses in 
conjunction with the hyperbolic embedding space.
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Deep Metric Learning
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Learning a deep embedding network 𝑓𝑓 so that 
semantically similar images are closely grouped together
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Deep Metric Learning
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The equivalence of human-labeled classes deals with 
only a tiny subset of possible relations between samples.
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Euclidean Space vs. Hyperbolic Space
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- Euclidean Embedding Space
• Most of deep metric learning model operate with 

spherical (cosine distance) or Euclidean embeddings.

• Euclidean space cannot embed large and complex 
graphs without distortion or loss of information.

• e.g., Hierarchical tree

- Hyperbolic Embedding Space
• Space of negative curvature possess geometric 

properties that make embeddings well-suited for 
modeling hierarchical relationships.



Poincaré Ball Model
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• There exist several models of hyperbolic space     
(e.g., Klein, Hyperboloid), but we take the popular 
one, Poincaré ball model.

• Poincare ball model is defined as                            
where the manifold                                           , 
Riemannian metric                         and 𝑐𝑐 is curvature.

• The hyperbolic distance between the                         
two vectors 𝑢𝑢 and 𝑣𝑣 is formulated as

𝑑𝑑𝐻𝐻 𝑢𝑢, 𝑣𝑣 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1 + 2
𝑐𝑐‖𝑢𝑢 − 𝑣𝑣‖2

(1 − 𝑐𝑐 𝑢𝑢 2)(1 − 𝑐𝑐 𝑣𝑣 2)

Hyperboloid model

Poincaré Model



HIErarchical Regularization (HIER)
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• Aiming to discover the latent semantic hierarchy of data with no additional 
annotation for the hierarchy.

• Employing hierarchical proxies that are learnable parameters serving as a virtual 
ancestor of data points in the hierarchy.

• Encouraging that the pair of related samples have the same lowest common 
ancestor (LCA) and the rest has a different LCA.



HIErarchical Regularization (HIER)
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Set of feasible triplets 𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋,𝒙𝒙𝒌𝒌
𝒯𝒯 = 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘 | (𝑥𝑥𝑗𝑗 ∈ 𝑅𝑅𝐾𝐾 𝑥𝑥𝑖𝑖 ∧ 𝑥𝑥𝑘𝑘 ∉ 𝑅𝑅𝐾𝐾 𝑥𝑥𝑖𝑖

where 𝑅𝑅𝐾𝐾 𝑥𝑥 = 𝑥𝑥′ 𝑥𝑥′ ∈ 𝑁𝑁𝐾𝐾 𝑥𝑥 ∧ 𝑥𝑥 ∈ 𝑁𝑁𝐾𝐾(𝑥𝑥′))}

Probability that a hierarchical 
proxy is the LCA:

𝜋𝜋𝑖𝑖𝑖𝑖 𝜌𝜌 = exp(−max{𝑑𝑑𝐻𝐻 𝑥𝑥𝑖𝑖 ,𝜌𝜌 ,𝑑𝑑𝐻𝐻(𝑥𝑥𝑗𝑗 ,𝜌𝜌)})

𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 𝜌𝜌 = exp(−max{𝑑𝑑𝐻𝐻 𝑥𝑥𝑖𝑖 , 𝜌𝜌 ,𝑑𝑑𝐻𝐻(𝑥𝑥𝑗𝑗 ,𝜌𝜌),𝑑𝑑𝐻𝐻(𝑥𝑥𝑘𝑘 ,𝜌𝜌)})

Sampling LCAs:
𝜌𝜌𝑖𝑖𝑖𝑖 = argmax𝜌𝜌(𝜋𝜋𝑖𝑖𝑖𝑖 𝜌𝜌 + 𝑔𝑔𝑖𝑖𝑖𝑖)

where 𝑔𝑔𝑖𝑖𝑖𝑖 ~ Gumbel 0,1
𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 = argmax𝜌𝜌(𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 𝜌𝜌 + 𝑔𝑔𝑖𝑖𝑖𝑖)



HIErarchical Regularization (HIER)
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Total training loss ℒ = ℒML + 𝜆𝜆 �
t∈{𝓣𝓣𝑥𝑥, 𝓣𝓣𝜌𝜌}

ℒHIER(𝑡𝑡)

Objective of HIER ℒHIER 𝑡𝑡 = 𝑑𝑑𝐻𝐻 𝑥𝑥𝑖𝑖 ,𝜌𝜌𝑖𝑖𝑖𝑖 − 𝑑𝑑𝐻𝐻 𝑥𝑥𝑖𝑖 ,𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿
+

+ 𝑑𝑑𝐻𝐻 𝑥𝑥𝑗𝑗 ,𝜌𝜌𝑖𝑖𝑖𝑖 − 𝑑𝑑𝐻𝐻 𝑥𝑥𝑗𝑗 ,𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿
+

+ 𝑑𝑑𝐻𝐻 𝑥𝑥𝑘𝑘 ,𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝐻𝐻 𝑥𝑥𝑘𝑘,𝜌𝜌𝑖𝑖𝑖𝑖 + 𝛿𝛿
+

attracting

repelling

ℒML : only controlling the angles between the 
normalized embedding vectors

ℒHIER: adjusting hyperbolic distances based 
on positions and norms.



Experiments
• Quantitative results on the image retrieval benchmarks
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Experiments
• UMAP visualization of our embedding space
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Hierarchical proxies Samples of distinct classes Ancestor-descendant relations



Experiments
• Analysis on semantic hierarchy
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Class-to-class affinity matrices
[Super-class]

Neighbors of leaf hierarchical proxies 
[Sub-class]



Conclusion

• Introducing HIER: a novel hierarchical regularization technique.

• Capturing the semantic hierarchy in a self-supervised learning fashion.

• Consistent performance improvements and state-of-the-art achievements.

• Seamless integration with existing metric learning losses.

13

Github Link

Thank you for your attention!
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